5 research outputs found

    Overlap at the molecular and immunohistochemical levels between angioimmunoblastic T-cell lymphoma and a subgroup of peripheral T-cell lymphomas without specific morphological features

    Get PDF
    The overlap of morphology and immunophenotype between angioimmunoblastic T-cell lymphoma (AITL) and other nodal peripheral T-cell lymphomas (n-PTCLs) is a matter of current interest whose clinical relevance and pathogenic background have not been fully established. We studied a series of 98 n-PTCL samples (comprising 57 AITL and 41 PTCL-NOS) with five TFH antibodies (CD10, BCL-6, PD-1, CXCL13, ICOS), looked for mutations in five of the genes most frequently mutated in AITL (TET2, DNMT3A, IDH2, RHOA and PLCG1) using the Next-Generation-Sequencing Ion Torrent platform, and measured the correlations of these characteristics with morphology and clinical features. The percentage of mutations in the RHOA and TET2 genes was similar (23.5% of cases). PLCG1 was mutated in 14.3%, IDH2 in 11.2% and DNMT3A in 7.1% of cases, respectively. In the complete series, mutations in RHOA gene were associated with the presence of mutations in IDH2, TET2 and DNMT3A (p < 0.001, p = 0.043, and p = 0.029, respectively). Fourteen cases featured RHOA mutations without TET2 mutations. A close relationship was found between the presence of these mutations and a TFH-phenotype in AITL and PTCL-NOS patients. Interestingly, BCL-6 expression was the only TFH marker differentially expressed between AITL and PTCL-NOS cases. There were many fewer mutated cases than there were cases with a TFH phenotype. Overall, these data suggest alternative ways by which neoplastic T-cells overexpress these proteins. On the other hand, no clinical or survival differences were found between any of the recognized subgroups of patients with respect to their immunohistochemistry or mutational profile.This work was supported by grants from the Instituto de Salud Carlos III, from the Ministerio de Economía, Industria y Competitividad (RTICC RD06/0020/0107, RD12/0036/0060, PI 12/1682, PT13/0010/0007, PI16/ 01294, SAF2013-47416-R, CIBERONC-ISCIII, PIE15/ 0081, ISCIII-MINECO AES-FEDER (Plan Estatal I+D+I 2013–2016): PI14/00221, PIE14/0064, PIE15/0081 and PIE16/01294)) and the Asociación Española Contra el Cáncer, Spain. JG-R is a recipient of an iPFIS predoctoral fellowship (IFI14/00003) from ISCIII-MINECO-AESFEDER (Plan Estatal I+D+I 2013–2016). MSB was supported by a Miguel Servet contract (CP11/00018) from the ISCIII-MINECO-AES-FEDER (Plan Nacional I+D+I 2008–2011), and currently holds a Miguel Servet II contract (CPII16/00024), supported by ISCIII-MINECOAES- FEDER (Plan Estatal I+D+I 2013–2016) and the Fundación de Investigación Biomédica Puerta de Hierro.S

    Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma

    Get PDF
    The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials

    Generation of a new monoclonal antibody against MALT1 by genetic immunization

    No full text
    Genetic immunization (GI), which is primarily used for vaccine purposes, is a method for producing antibodies to a protein by delivering the gene encoding the protein as a eukaryotic expression vector instead of the protein itself. The mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) is one of the most likely candidates for involvement in pathogenesis of MALT lymphoma and probably of multiple myelomas. In the present work we describe the production and characterization of a mouse monoclonal antibody (mAb) directed against MALT1 and the study of MALT1 protein expression in a large series of lymphomas and myeloma cell lines. The full-length coding sequence of human MALT1 was inserted into pcDNA3 vector and delivered into mouse skin using a helium gene gun. Six new mAbs against the MALT1 molecule were produced. In order to characterize and confirm the specificity of these mAbs, Western blot (WB) and immunoprecipitation (IP) analyses were performed. A new anti-MALT1 mAb was selected and tested in a large series of cell lines. These results confirm that GI is a reliable and effective alternative method for production of mAbs, allowing accurate and sensitive detection and screening of proteins by WB

    Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma

    No full text
    The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-kappaB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of 500 mice and 1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials
    corecore