5 research outputs found

    CEERS: 7.7 μ{\mu}m PAH Star Formation Rate Calibration with JWST MIRI

    Full text link
    We test the relationship between UV-derived star formation rates (SFRs) and the 7.7 μ{\mu}m polycyclic aromatic hydrocarbon (PAH) luminosities from the integrated emission of galaxies at z ~ 0 - 2. We utilize multi-band photometry covering 0.2 - 160 μ{\mu}m from HST, CFHT, JWST, Spitzer, and Herschel for galaxies in the Cosmic Evolution Early Release Science (CEERS) Survey. We perform spectral energy distribution (SED) modeling of these data to measure dust-corrected far-UV (FUV) luminosities, LFUVL_{FUV}, and UV-derived SFRs. We then fit SED models to the JWST/MIRI 7.7 - 21 μ{\mu}m CEERS data to derive rest-frame 7.7 μ{\mu}m luminosities, L770L_{770}, using the average flux density in the rest-frame MIRI F770W bandpass. We observe a correlation between L770L_{770} and LFUVL_{FUV}, where log L770L_{770} is proportional to (1.27+/-0.04) log LFUVL_{FUV}. L770L_{770} diverges from this relation for galaxies at lower metallicities, lower dust obscuration, and for galaxies dominated by evolved stellar populations. We derive a "single-wavelength" SFR calibration for L770L_{770} which has a scatter from model estimated SFRs (σΔSFR{{\sigma}_{{\Delta}SFR}}) of 0.24 dex. We derive a "multi-wavelength" calibration for the linear combination of the observed FUV luminosity (uncorrected for dust) and the rest-frame 7.7 μ{\mu}m luminosity, which has a scatter of σΔSFR{{\sigma}_{{\Delta}SFR}} = 0.21 dex. The relatively small decrease in σ{\sigma} suggests this is near the systematic accuracy of the total SFRs using either calibration. These results demonstrate that the rest-frame 7.7 μ{\mu}m emission constrained by JWST/MIRI is a tracer of the SFR for distant galaxies to this accuracy, provided the galaxies are dominated by star-formation with moderate-to-high levels of attenuation and metallicity.Comment: 20 pages, 11 figures, 2 tables, submitted to Ap

    CEERS: Spatially Resolved UV and mid-IR Star Formation in Galaxies at 0.2 < z < 2.5: The Picture from the Hubble and James Webb Space Telescopes

    Get PDF
    We present the mid-IR (MIR) morphologies for 64 star-forming galaxies at 0.210^{9}~M_\odot} using JWST MIRI observations from the Cosmic Evolution Early Release Science survey (CEERS). The MIRI bands span the MIR (7.7--21~μ\mum), enabling us to measure the effective radii (ReffR_{\rm{eff}}) and S\'{e}rsic indexes of these SFGs at rest-frame 6.2 and 7.7 μ\mum, which contains strong emission from Polycyclic aromatic hydrocarbon (PAH) features, a well-established tracer of star formation in galaxies. We define a ``PAH-band'' as the MIRI bandpass that contains these features at the redshift of the galaxy. We then compare the galaxy morphologies in the PAH-bands to those in rest-frame Near-UV (NUV) using HST ACS/F435W or ACS/F606W and optical/near-IR using HST WFC3/F160W imaging from UVCANDELS and CANDELS, where the NUV-band and F160W trace the profile of (unobscured) massive stars and the stellar continuum, respectively. The ReffR_{\rm{eff}} of galaxies in the PAH-band are slightly smaller (\sim10\%) than those in F160W for galaxies with M109.5 M\rm{M_*\gtrsim10^{9.5}~M_\odot} at z1.2z\leq1.2, but the PAH-band and F160W have a similar fractions of light within 1 kpc. In contrast, the ReffR_{\rm{eff}} of galaxies in the NUV-band are larger, with lower fractions of light within 1 kpc compared to F160W for galaxies at z1.2z\leq1.2. Using the MIRI data to estimate the SFRIR\rm{SFR_{\rm{IR}}} surface density, we find the correlation between the SFRIR\rm{SFR_{\rm{IR}}} surface density and stellar mass has a steeper slope than that of the SFRUV\rm{SFR_{\rm{UV}}} surface density and stellar mass, suggesting more massive galaxies having increasing amounts of obscured fraction of star formation in their inner regions. This paper demonstrates how the high-angular resolution data from JWST/MIRI can reveal new information about the morphology of obscured-star formation.Comment: 28 pages, 11 figures, Accepted by Ap

    Dusty Starbursts Masquerading as Ultra-high Redshift Galaxies in JWST CEERS Observations

    Get PDF
    Lyman-break galaxy (LBG) candidates at z ≳ 10 are rapidly being identified in James Webb Space Telescope (JWST)/NIRCam observations. Due to the (redshifted) break produced by neutral hydrogen absorption of rest-frame UV photons, these sources are expected to drop out in the bluer filters while being well detected in redder filters. However, here we show that dust-enshrouded star-forming galaxies at lower redshifts (z ≲ 7) may also mimic the near-infrared (near-IR) colors of z > 10 LBGs, representing potential contaminants in LBG candidate samples. First, we analyze CEERS-DSFG-1, a NIRCam dropout undetected in the F115W and F150W filters but detected at longer wavelengths. Combining the JWST data with (sub)millimeter constraints, including deep NOEMA interferometric observations, we show that this source is a dusty star-forming galaxy (DSFG) at z ≈ 5.1. We also present a tentative 2.6σ SCUBA-2 detection at 850 μm around a recently identified z ≈ 16 LBG candidate in the same field and show that, if the emission is real and associated with this candidate, the available photometry is consistent with a z ∼ 5 dusty galaxy with strong nebular emission lines despite its blue near-IR colors. Further observations on this candidate are imperative to mitigate the low confidence of this tentative submillimeter emission and its positional uncertainty. Our analysis shows that robust (sub)millimeter detections of NIRCam dropout galaxies likely imply z ∼ 4–6 redshift solutions, where the observed near-IR break would be the result of a strong rest-frame optical Balmer break combined with high dust attenuation and strong nebular line emission, rather than the rest-frame UV Lyman break. This provides evidence that DSFGs may contaminate searches for ultra-high redshift LBG candidates from JWST observations

    A Long Time Ago in a Galaxy Far, Far Away: A Candidate z ∼ 12 Galaxy in Early JWST CEERS Imaging

    No full text
    We report the discovery of a candidate galaxy with a photo-z of z ∼ 12 in the first epoch of the James Webb Space Telescope (JWST) Cosmic Evolution Early Release Science Survey. Following conservative selection criteria, we identify a source with a robust z phot = 11.8−0.2+0.3 (1σ uncertainty) with m F200W = 27.3 and ≳7σ detections in five filters. The source is not detected at λ 1.9 mag (2σ lower limit) with a blue continuum slope, resulting in 99.6% of the photo-z probability distribution function favoring z > 11. All data-quality images show no artifacts at the candidate’s position, and independent analyses consistently find a strong preference for z > 11. Its colors are inconsistent with Galactic stars, and it is resolved (r h = 340 ± 14 pc). Maisie’s Galaxy has log M */M ⊙ ∼ 8.5 and is highly star-forming (log sSFR ∼ −8.2 yr−1), with a blue rest-UV color (β ∼ −2.5) indicating little dust, though not extremely low metallicity. While the presence of this source is in tension with most predictions, it agrees with empirical extrapolations assuming UV luminosity functions that smoothly decline with increasing redshift. Should follow-up spectroscopy validate this redshift, our universe was already aglow with galaxies less than 400 Myr after the Big Bang

    Dusty starbursts masquerading as ultra-high redshift galaxies in JWST CEERS observations

    No full text
    Lyman Break Galaxy (LBG) candidates at z ≳ 10 are rapidly being identified in JWST/NIRCam observations. Due to the (redshifted) break produced by neutral hydrogen absorption of rest-frame UV photons, these sources are expected to drop out in the bluer filters while being well-detected in redder filters. However, here we show that dust-enshrouded star-forming galaxies at lower redshifts (z ≲ 7) may also mimic the near-infrared colors of z > 10 LBGs, representing potential contaminants in LBG candidate samples. First, we analyze CEERS-DSFG-1, a NIRCam dropout undetected in the F115W and F150W filters but detected at longer wavelengths. Combining the JWST data with (sub)millimeter constraints, including deep NOEMA interferometric observations, we show that this source is a dusty star-forming galaxy (DSFG) at z ≈ 5.1. We also present a tentative 2.6σ SCUBA-2 detection at 850 µm around a recently identified z ≈ 16 LBG candidate in the same field and show that, if the emission is real and associated with this candidate, the available photometry is consistent with a z ∼ 5 dusty galaxy with strong nebular emission lines despite its blue near-IR colors. Further observations on this candidate are imperative to mitigate the low confidence of this tentative emission and its positional uncertainty. Our analysis shows that robust (sub)millimeter detections of NIRCam dropout galaxies likely imply z ∼ 4 − 6 redshift solutions, where the observed near-IR break would be the result of a strong rest-frame optical Balmer break combined with high dust attenuation and 2 The CEERS collaboration strong nebular line emission, rather than the rest-frame UV Lyman break. This provides evidence that DSFGs may contaminate searches for ultra high-redshift LBG candidates from JWST observations
    corecore