5,951 research outputs found
An Instrument for Recording the Position of Airplane Control Surfaces
N.A.C.A. has developed an instrument which makes a continuous record of the angular position of the control surfaces of an airplane, not only in steady flight but during acrobatics as well. It has proven useful in researches into stability and controllability, and from records obtained from it many otherwise obscure details of piloting technique have been available for the instruction of pilots, from novices to seasoned experts
Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration
Living systems are forced away from thermodynamic equilibrium by exchange of
mass and energy with their environment. In order to model a biochemical
reaction network in a non-equilibrium state one requires a mathematical
formulation to mimic this forcing. We provide a general formulation to force an
arbitrary large kinetic model in a manner that is still consistent with the
existence of a non-equilibrium steady state. We can guarantee the existence of
a non-equilibrium steady state assuming only two conditions; that every
reaction is mass balanced and that continuous kinetic reaction rate laws never
lead to a negative molecule concentration. These conditions can be verified in
polynomial time and are flexible enough to permit one to force a system away
from equilibrium. In an expository biochemical example we show how a
reversible, mass balanced perpetual reaction, with thermodynamically infeasible
kinetic parameters, can be used to perpetually force a kinetic model of
anaerobic glycolysis in a manner consistent with the existence of a steady
state. Easily testable existence conditions are foundational for efforts to
reliably compute non-equilibrium steady states in genome-scale biochemical
kinetic models.Comment: 11 pages, 2 figures (v2 is now placed in proper context of the
excellent 1962 paper by James Wei entitled "Axiomatic treatment of chemical
reaction systems". In addition, section 4, on "Utility of steady state
existence theorem" has been expanded.
MetaboTools: A comprehensive toolbox for analysis of genome-scale metabolic models
Metabolomic data sets provide a direct read-out of cellular phenotypes and
are increasingly generated to study biological questions. Our previous work
revealed the potential of analyzing extracellular metabolomic data in the
context of the metabolic model using constraint-based modeling. Through this
work, which consists of a protocol, a toolbox, and tutorials of two use cases,
we make our methods available to the broader scientific community. The protocol
describes, in a step-wise manner, the workflow of data integration and
computational analysis. The MetaboTools comprise the Matlab code required to
complete the workflow described in the protocol. Tutorials explain the
computational steps for integration of two different data sets and demonstrate
a comprehensive set of methods for the computational analysis of metabolic
models and stratification thereof into different phenotypes. The presented
workflow supports integrative analysis of multiple omics data sets.
Importantly, all analysis tools can be applied to metabolic models without
performing the entire workflow. Taken together, this protocol constitutes a
comprehensive guide to the intra-model analysis of extracellular metabolomic
data and a resource offering a broad set of computational analysis tools for a
wide biomedical and non-biomedical research community
Certifying cost annotations in compilers
We discuss the problem of building a compiler which can lift in a provably
correct way pieces of information on the execution cost of the object code to
cost annotations on the source code. To this end, we need a clear and flexible
picture of: (i) the meaning of cost annotations, (ii) the method to prove them
sound and precise, and (iii) the way such proofs can be composed. We propose a
so-called labelling approach to these three questions. As a first step, we
examine its application to a toy compiler. This formal study suggests that the
labelling approach has good compositionality and scalability properties. In
order to provide further evidence for this claim, we report our successful
experience in implementing and testing the labelling approach on top of a
prototype compiler written in OCAML for (a large fragment of) the C language
Conditions for duality between fluxes and concentrations in biochemical networks
Mathematical and computational modelling of biochemical networks is often
done in terms of either the concentrations of molecular species or the fluxes
of biochemical reactions. When is mathematical modelling from either
perspective equivalent to the other? Mathematical duality translates concepts,
theorems or mathematical structures into other concepts, theorems or
structures, in a one-to-one manner. We present a novel stoichiometric condition
that is necessary and sufficient for duality between unidirectional fluxes and
concentrations. Our numerical experiments, with computational models derived
from a range of genome-scale biochemical networks, suggest that this
flux-concentration duality is a pervasive property of biochemical networks. We
also provide a combinatorial characterisation that is sufficient to ensure
flux-concentration duality. That is, for every two disjoint sets of molecular
species, there is at least one reaction complex that involves species from only
one of the two sets. When unidirectional fluxes and molecular species
concentrations are dual vectors, this implies that the behaviour of the
corresponding biochemical network can be described entirely in terms of either
concentrations or unidirectional fluxes
Presence and task performance:an approach in the light of cognitive style
The paper highlights the relationship between each of four bi-polar dimensions of personality cognitive style, such as extraversionâintroversion, sensingâintuition, thinkingâfeeling and judgingâperceiving, and the level of sense of presence experienced. Findings indicate that individuals who are more sensitive, more feeling or more introverted experience a higher level of presence. While not reaching statistical significance, differing cognitive styles appear to impact on task performance. The apparent negative relationship discovered between sense of presence and task performance should be considered in the light of task characteristics. We discuss the implications of these findings and how they contribute to an understanding of the complex relationship that exists between presence and task performance and how this subsequently ought to influence the design of virtual environments
- âŠ