2 research outputs found
Electroencephalographic field influence on calcium momentum waves
Macroscopic EEG fields can be an explicit top-down neocortical mechanism that
directly drives bottom-up processes that describe memory, attention, and other
neuronal processes. The top-down mechanism considered are macrocolumnar EEG
firings in neocortex, as described by a statistical mechanics of neocortical
interactions (SMNI), developed as a magnetic vector potential . The
bottom-up process considered are waves prominent in synaptic
and extracellular processes that are considered to greatly influence neuronal
firings. Here, the complimentary effects are considered, i.e., the influence of
on momentum, . The canonical
momentum of a charged particle in an electromagnetic field, (SI units), is calculated, where the charge of
is , is the magnitude of the charge of an
electron. Calculations demonstrate that macroscopic EEG can be
quite influential on the momentum of ions, in
both classical and quantum mechanics. Molecular scales of
wave dynamics are coupled with fields developed at macroscopic
regional scales measured by coherent neuronal firing activity measured by scalp
EEG. The project has three main aspects: fitting models to EEG
data as reported here, building tripartite models to develop
models, and studying long coherence times of waves in the
presence of due to coherent neuronal firings measured by scalp
EEG. The SMNI model supports a mechanism wherein the interaction at tripartite synapses, via a dynamic centering
mechanism (DCM) to control background synaptic activity, acts to maintain
short-term memory (STM) during states of selective attention.Comment: Final draft. http://ingber.com/smni14_eeg_ca.pdf may be updated more
frequentl