66 research outputs found

    A dual-time-window protocol to reduce acquisition time of dynamic tau PET imaging using [F-18]MK-6240

    Get PDF
    Background [F-18]MK-6240 is a PET tracer with sub-nanomolar affinity for neurofibrillary tangles. Therefore, tau quantification is possible with [F-18]MK-6240 PET/CT scans, and it can be used for assessment of Alzheimer's disease. However, long acquisition scans are required to provide fully quantitative estimates of pharmacokinetic parameters. Therefore, on the present study, dual-time-window (DTW) acquisitions was simulated to reduce PET/CT acquisition time, while taking into consideration perfusion changes and possible scanning protocol non-compliance. To that end, time activity curves (TACs) representing a 120-min acquisition (TAC(120)) were simulated using a two-tissue compartment model with metabolite corrected arterial input function from 90-min dynamic [F-18]MK-6240 PET scans of three healthy control subjects and five subjects with mild cognitive impairment or Alzheimer's disease. Therefore, TACs corresponding to different levels of specific binding were generated and then various perfusion changes were simulated. Next, DTW acquisitions were simulated consisting of an acquisition starting at tracer injection, a break and a second acquisition starting at 90 min post-injection. Finally, non-compliance with the PET/CT scanning protocol were simulated to assess its impact on quantification. All TACs were quantified using reference Logan's distribution volume ratio (DVR) and standardized uptake value ratio (SUVR90) using the cerebellar cortex as reference region. Results It was found that DVR from a DTW protocol with a 60-min break between two 30-min dynamic scans closely approximates the DVR from the uninterrupted TAC(120), with a regional bias smaller than 2.5%. Moreover, SUVR90 estimates were more susceptible (regional bias</p

    Regional accuracy of ZTE-based attenuation correction in static and dynamic brain PET/MR

    Full text link
    Accurate MR-based attenuation correction (MRAC) is essential for quantitative PET/MR imaging of the brain. In this study, we analyze the regional bias caused by MRAC based on Zero-Echo-Time MR images (ZTEAC) compared to CT-based AC (CTAC) in static and dynamic PET imaging. In addition the results are compared to the performance of the current default Atlas-based AC (AtlasAC) implemented in the GE SIGNA PET/MR. Methods: Thirty static [18F]FDG and 11 dynamic [18}F]PE2I acquisitions from a GE SIGNA PET/MR were reconstructed using ZTEAC (using a research tool, GE Healthcare), single-subject AtlasAC (the current default AC in GE's SIGNA PET/MR) and CTAC (from a PET/CT acquisition of the same day). In the 30 static [18F]FDG reconstructions, the bias caused by ZTEAC and AtlasAC in the mean uptake of 85 anatomical volumes of interest (VOIs) of the Hammers' atlas was analyzed in PMOD. For the 11 dynamic [18}F]PE2I reconstructions, the bias caused by ZTEAC and AtlasAC in the non displaceable binding potential BPnd in the striatum was calculated with cerebellum as the reference region and a simplified reference tissue model. Results: The regional bias caused by ZTEAC in the static [18F]FDG reconstructions ranged from -8.0% to +7.7% (mean 0.1%, SD 2.0%). For AtlasAC this bias ranged from -31.6% to +16.6% (mean -0.4%, SD 4.3%). The bias caused by AtlasAC showed a clear gradient in the cranio-caudal direction (-4.2% in the cerebellum, +6.6% in the left superior frontal gyrus). The bias in the striatal BPnd for the [18F]PE2I reconstructions ranged from -0.8% to +4.8% (mean 1.5%, SD 1.4%) using ZTEAC and from -0.6% to +9.4% using AtlasAC (mean 4.2%, SD 2.6%). Conclusion: ZTEAC provides excellent quantitative accuracy for static and dynamic brain PET/MR, comparable to CTAC, and is clearly superior to the default AtlasAC currently implemented in the GE SIGNA PET/MR.Comment: 23 pages in total, 7 figures, 1 table, 3 supplementary figures, 5 supplementary table

    Clinically Valuable Quality Control for PET/MRI Systems:Consensus Recommendation From the HYBRID Consortium

    Get PDF
    International audienceQuality control (QC) of medical imaging devices is essential to ensure their proper function and to gain accurate and quantitative results. Therefore, several international bodies have published QC guidelines and recommendations for a wide range of imaging modalities to ensure adequate performance of the systems. Hybrid imaging systems such as positron emission tomography/computed tomography (PET/CT) or PET/magnetic resonance imaging (PET/MRI), in particular, present additional challenges caused by differences between the combined modalities. However, despite the increasing use of this hybrid imaging modality in recent years, there are no dedicated QC recommendations for PET/MRI. Therefore, this work aims at collecting information on QC procedures across a European PET/MRI network, presenting quality assurance procedures implemented by PET/MRI vendors and achieving a consensus on PET/MRI QC procedures across imaging centers. Users of PET/MRI systems at partner sites involved in the HYBRID consortium were surveyed about local frequencies of QC procedures for PET/MRI. Although all sites indicated that they perform vendor-specific daily QC procedures, significant variations across the centers were observed for other QC tests and testing frequencies. Likewise, variations in available recommendations and guidelines and the QC procedures implemented by vendors were found. Based on the available information and our clinical expertise within this consortium, we were able to propose a minimum set of PET/MRI QC recommendations including the daily QC, cross-calibration tests, and an image quality (IQ) assessment for PET and coil checks and MR image quality tests for MRI. Together with regular checks of the PET-MRI alignment, proper PET/MRI performance can be ensured

    Pharmacokinetic modeling of [C-11]flumazenil kinetics in the rat brain

    Get PDF
    BACKGROUND: Preferred models for the pharmacokinetic analysis of [11C]flumazenil human studies have been previously established. However, direct translation of these models and settings to animal studies might be sub-optimal. Therefore, this study evaluates pharmacokinetic models for the quantification of [11C]flumazenil binding in the rat brain. Dynamic (60 min) [11C]flumazenil brain PET scans were performed in two groups of male Wistar rats (tracer dose (TD), n = 10 and pre-saturated (PS), n = 2). Time-activity curves from five regions were analyzed, including the pons (pseudo-reference region). Distribution volume (VT) was calculated using one- and two-tissue compartment models (1TCM and 2TCM) and spectral analysis (SA). Binding potential (BPND) was determined from full and simplified reference tissue models with one or two compartments for the reference tissue (FRTM, SRTM, and SRTM-2C). Model preference was determined by Akaike information criterion (AIC), while parameter agreement was assessed by linear regression, repeated measurements ANOVA and Bland-Altman plots. RESULTS: 1TCM and 2TCM fits of regions with high specific binding showed similar AIC, a preference for the 1TCM, and good VT agreement (0.1% difference). In contrast, the 2TCM was markedly preferred and necessary for fitting low specific-binding regions, where a worse VT agreement (17.6% difference) and significant VT differences between the models (p < 0.005) were seen. The PS group displayed results similar to those of low specific-binding regions. All reference models (FRTM, SRTM, and SRTM-2C) resulted in at least 13% underestimation of BPND. CONCLUSIONS: Although the 1TCM was sufficient for the quantification of high specific-binding regions, the 2TCM was found to be the most adequate for the quantification of [11C]flumazenil in the rat brain based on (1) higher fit quality, (2) lower AIC values, and (3) ability to provide reliable fits for all regions. Reference models resulted in negatively biased BPND and were affected by specific binding in the pons of the rat

    The bone graft in the alveolar cleft

    No full text

    Spray and stretch technique and its effects on mouth opening.

    No full text
    STATEMENT OF PROBLEM Mandibular mouth opening through passive stretching may be an awkward and painful experience for patients with orofacial pain. Whether a spray technique would reduce such discomfort is unclear. PURPOSE The purpose of this clinical study was to determine whether the use of a spray technique would be an effective method of increasing maximal mouth opening (MMO) without passive stretching to avoid patient discomfort. MATERIAL AND METHODS A sample of 61 participants, 33 men and 28 women, without orofacial pain was selected from a general dental office, and a sample of 60 participants, 30 men and 30 women, was selected from a cohort of over 750 patients with orofacial pain from an oral surgery department. The presence of orofacial pain in the patient group was verified and recorded by means of palpation of the temporomandibular joints (TMJs) and masticatory, neck, and shoulder muscles. All participants in the study were instructed to open their mouth maximally to permit insertion of a TMJ equilateral triangle and the measurement of their MMO twice. Then, the participants were informed that a vapocoolant would be sprayed twice on both cheeks from the mandibular angle to the temple area. After spraying, the participants were requested to open their mouth maximally, and again the interincisal distance was measured twice. For analysis of the variables, a 2-way ANOVA was used with estimates for group effects and a correction for sex. A covariance model was used to test the effect of age (α=.05). RESULTS Testing for age revealed an effect for both study groups (P=.032), but not for sex (P=.074). Testing baseline values of maximal mouth opening for the studied groups revealed no significant difference (P=.175), although for sex, it did (P=.008). The relative gain as a percentage of increase in mouth opening led to similar results, comparable with the values of the absolute increase in magnitude (P<.001 for the study groups and P=.090 for sex). Testing the effect of age in a covariance model did not lead to a significant result (P=.73). CONCLUSIONS The spray and stretch technique increased maximal mouth opening in most participants, more so in participants with orofacial pain than in the control group and more in women than in men. Pain from passive stretching can be prevented

    Recurrent calcifying odontogenic cyst (Case report)

    No full text
    A case of calcifying odontogenic cyst is reported in which the lesion recurred after almost 7 years. We would advise a long-term follow-up for patients with this lesion

    Postoperative contamination of mandibular osteotomy sites with saliva

    No full text
    Postoperative salivary contamination of surgical wounds around the mandible was found in several types of osteotomy and bone grafting procedure. This problem was investigated by determining the amylase content of wound secretions in redon bottles every 24h. The implications for antibiotic prophylaxis are discussed
    corecore