1,307 research outputs found

    Complete high-precision entropic sampling

    Full text link
    Monte Carlo simulations using entropic sampling to estimate the number of configurations of a given energy are a valuable alternative to traditional methods. We introduce {\it tomographic} entropic sampling, a scheme which uses multiple studies, starting from different regions of configuration space, to yield precise estimates of the number of configurations over the {\it full range} of energies, {\it without} dividing the latter into subsets or windows. Applied to the Ising model on the square lattice, the method yields the critical temperature to an accuracy of about 0.01%, and critical exponents to 1% or better. Predictions for systems sizes L=10 - 160, for the temperature of the specific heat maximum, and of the specific heat at the critical temperature, are in very close agreement with exact results. For the Ising model on the simple cubic lattice the critical temperature is given to within 0.003% of the best available estimate; the exponent ratios β/ν\beta/\nu and γ/ν\gamma/\nu are given to within about 0.4% and 1%, respectively, of the literature values. In both two and three dimensions, results for the {\it antiferromagnetic} critical point are fully consistent with those of the ferromagnetic transition. Application to the lattice gas with nearest-neighbor exclusion on the square lattice again yields the critical chemical potential and exponent ratios β/ν\beta/\nu and γ/ν\gamma/\nu to good precision.Comment: For a version with figures go to http://www.fisica.ufmg.br/~dickman/transfers/preprints/entsamp2.pd

    The emergence of modern statistics in agricultural science : Analysis of variance, experimental design and the reshaping of research at Rothamsted Experimental Station, 1919–1933

    Get PDF
    During the twentieth century statistical methods have transformed research in the experimental and social sciences. Qualitative evidence has largely been replaced by quantitative results and the tools of statistical inference have helped foster a new ideal of objectivity in scientific knowledge. The paper will investigate this transformation by considering the genesis of analysis of variance and experimental design, statistical methods nowadays taught in every elementary course of statistics for the experimental and social sciences. These methods were developed by the mathematician and geneticist R. A. Fisher during the 1920s, while he was working at Rothamsted Experimental Station, where agricultural research was in turn reshaped by Fisher’s methods. Analysis of variance and experimental design required new practices and instruments in field and laboratory research, and imposed a redistribution of expertise among statisticians, experimental scientists and the farm staff. On the other hand the use of statistical methods in agricultural science called for a systematization of information management and made computing an activity integral to the experimental research done at Rothamsted, permanently integrating the statisticians’ tools and expertise into the station research programme. Fisher’s statistical methods did not remain confined within agricultural research and by the end of the 1950s they had come to stay in psychology, sociology, education, chemistry, medicine, engineering, economics, quality control, just to mention a few of the disciplines which adopted them

    Finite-Size Scaling of the Domain Wall Entropy Distributions for the 2D ±J\pm J Ising Spin Glass

    Full text link
    The statistics of domain walls for ground states of the 2D Ising spin glass with +1 and -1 bonds are studied for L×LL \times L square lattices with L≤48L \le 48, and pp = 0.5, where pp is the fraction of negative bonds, using periodic and/or antiperiodic boundary conditions. When LL is even, almost all domain walls have energy EdwE_{dw} = 0 or 4. When LL is odd, most domain walls have EdwE_{dw} = 2. The probability distribution of the entropy, SdwS_{dw}, is found to depend strongly on EdwE_{dw}. When Edw=0E_{dw} = 0, the probability distribution of ∣Sdw∣|S_{dw}| is approximately exponential. The variance of this distribution is proportional to LL, in agreement with the results of Saul and Kardar. For Edw=k>0E_{dw} = k > 0 the distribution of SdwS_{dw} is not symmetric about zero. In these cases the variance still appears to be linear in LL, but the average of SdwS_{dw} grows faster than L\sqrt{L}. This suggests a one-parameter scaling form for the LL-dependence of the distributions of SdwS_{dw} for k>0k > 0.Comment: 13 page

    Protecting eyewitness evidence: Examining the efficacy of a self-administered interview tool

    Get PDF
    Given the crucial role of eyewitness evidence, statements should be obtained as soon as possible after an incident. This is not always achieved due to demands on police resources. Two studies trace the development of a new tool, the Self-Administered Interview (SAI), designed to elicit a comprehensive initial statement. In Study 1, SAI participants reported more correct details than participants who provided a free recall account, and performed at the same level as participants given a Cognitive Interview. In Study 2, participants viewed a simulated crime and half recorded their statement using the SAI. After a delay of 1 week, all participants completed a free recall test. SAI participants recalled more correct details in the delayed recall task than control participants

    Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    Get PDF
    Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25°  ×  0.3125°, 2°  ×  2.5°, 4°  ×  5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25°  ×  0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25°  ×  0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications

    Sandpiles with height restrictions

    Full text link
    We study stochastic sandpile models with a height restriction in one and two dimensions. A site can topple if it has a height of two, as in Manna's model, but, in contrast to previously studied sandpiles, here the height (or number of particles per site), cannot exceed two. This yields a considerable simplification over the unrestricted case, in which the number of states per site is unbounded. Two toppling rules are considered: in one, the particles are redistributed independently, while the other involves some cooperativity. We study the fixed-energy system (no input or loss of particles) using cluster approximations and extensive simulations, and find that it exhibits a continuous phase transition to an absorbing state at a critical value zeta_c of the particle density. The critical exponents agree with those of the unrestricted Manna sandpile.Comment: 10 pages, 14 figure

    Evaluation of Microwave Steam Bags for the Decontamination of Filtering Facepiece Respirators

    Get PDF
    Reusing filtering facepiece respirators (FFRs) has been suggested as a strategy to conserve available supplies for home and healthcare environments during an influenza pandemic. For reuse to be possible, used FFRs must be decontaminated before redonning to reduce the risk of virus transmission; however, there are no approved methods for FFR decontamination. An effective method must reduce the microbial threat, maintain the function of the FFR, and present no residual chemical hazard. The method should be readily available, inexpensive and easily implemented by healthcare workers and the general public. Many of the general decontamination protocols used in healthcare and home settings are unable to address all of the desired qualities of an efficient FFR decontamination protocol. The goal of this study is to evaluate the use of two commercially available steam bags, marketed to the public for disinfecting infant feeding equipment, for FFR decontamination. The FFRs were decontaminated with microwave generated steam following the manufacturers' instructions then evaluated for water absorption and filtration efficiency for up to three steam exposures. Water absorption of the FFR was found to be model specific as FFRs constructed with hydrophilic materials absorbed more water. The steam had little effect on FFR performance as filtration efficiency of the treated FFRs remained above 95%. The decontamination efficacy of the steam bag was assessed using bacteriophage MS2 as a surrogate for a pathogenic virus. The tested steam bags were found to be 99.9% effective for inactivating MS2 on FFRs; however, more research is required to determine the effectiveness against respiratory pathogens

    Critical behavior of a one-dimensional fixed-energy stochastic sandpile

    Get PDF
    We study a one-dimensional fixed-energy version (that is, with no input or loss of particles), of Manna's stochastic sandpile model. The system has a continuous transition to an absorbing state at a critical value ζc\zeta_c of the particle density. Critical exponents are obtained from extensive simulations, which treat both stationary and transient properties. In contrast with other one-dimensional sandpiles, the model appears to exhibit finite-size scaling, though anomalies exist in the scaling of relaxation times and in the approach to the stationary state. The latter appear to depend strongly on the nature of the initial configuration. The critical exponents differ from those expected at a linear interface depinning transition in a medium with point disorder, and from those of directed percolation.Comment: 15 pages, 11 figure

    Random Field and Random Anisotropy Effects in Defect-Free Three-Dimensional XY Models

    Full text link
    Monte Carlo simulations have been used to study a vortex-free XY ferromagnet with a random field or a random anisotropy on simple cubic lattices. In the random field case, which can be related to a charge-density wave pinned by random point defects, it is found that long-range order is destroyed even for weak randomness. In the random anisotropy case, which can be related to a randomly pinned spin-density wave, the long-range order is not destroyed and the correlation length is finite. In both cases there are many local minima of the free energy separated by high entropy barriers. Our results for the random field case are consistent with the existence of a Bragg glass phase of the type discussed by Emig, Bogner and Nattermann.Comment: 10 pages, including 2 figures, extensively revise
    • …
    corecore