99 research outputs found

    Differential Proliferative Characteristics of Alveolar Fibroblasts in Interstitial Lung Diseases: Regulative Role of IL-1 and PGE2

    Get PDF
    Fibroblasts (Fb) from patients with sarcoidosis (SA) and hypersensitivity pneumonitis (HP) exhibited a lower proliferative capacity compared with Fb obtained from control (CO) and diffuse interstitial fibrosis patients (DIF). Proliferation of Fb from SA or lip patients was suppressed by autologous LPS-stimulated alveolar macrophages (AM) supernatants but not by those from CO patients. Similarly, alveolar macrophages (AM) derived supernatant, obtained from CO, did not suppress the proliferation of SA and HP Fb. AM from SA and HP patients secreted higher amounts of IL-1α and β compared with controls and compared with Fb from SA and HP patients. Steady levels of IL-1α and βmRNA were expressed in unstimulated and stimulated cultures. Fb from SA and HP patients could be stimulated by LPS to secrete significantly higher levels of PGE2 than those detected in supernatants from LPS stimulated Fb of DIF patients. Only the proliferation of Fb from SA and HP patients was sensitive to amounts of IL-1 equivalent to those detected in the lung of these diseases. As SA and HP are two diseases where irreversible deterioration occurs in only 20% of the patients, we hypothesize that mediators in the lung may modulate Fb proliferation. IL-1 of AM origin and PGE2 of Fb origin secreted at high levels, may be candidates for this suppression because it was abrogated by anti IL-1β and indomethacin

    MABp1 as a novel antibody treatment for advanced colorectal cancer: a randomised, double-blind, placebo-controlled, phase 3 study.

    Get PDF
    BACKGROUND: MABp1, an antibody that targets interleukin 1α, has been associated with antitumour activity and relief of debilitating symptoms in patients with advanced colorectal cancer. We sought to establish the effect of MABp1 with a new primary endpoint in patients with advanced colorectal cancer. METHODS: Eligible patients for the double-blind phase of this ongoing, placebo-controlled, randomised, phase 3 trial, had metastatic or unresectable disease, Eastern Cooperative Oncology Group performance status score 1 or 2, systemic inflammation, weight loss, and other disease-related morbidities associated with poor prognosis, and were refractory to oxaliplatin and irinotecan. Patients were randomly assigned 2:1 to receive either MABp1 or placebo. Randomisation codes were obtained from a centrally held list via an interactive web response system. Patients received an intravenous infusion of 7·5 mg/kg MABp1 or placebo given every 2 weeks for 8 weeks. The primary endpoint was assessed in patients who received at least one dose of MABp1 or placebo (modified intention-to-treat population), and was a composite of stable or increased lean body mass and stability or improvement in two of three symptoms (pain, fatigue, or anorexia) at week 8 compared with baseline measurements. This study is registered with ClinicalTrials.gov, number NCT02138422. FINDINGS: Patients were enrolled between May 20, 2014, and Sept 2, 2015. The double-blind phase of the study was completed on Nov 3, 2015. Of 333 patients randomly assigned treatment, 207 received at least one dose of MABp1 and 102 at least one dose of placebo. 68 (33%) and 19 (19%) patients, respectively, achieved the primary endpoint (relative risk 1·76, 95% CI 1·12-2·77, p=0·0045). The most common grade 3-4 adverse events in the MABp1 group compared with in the placebo group were anaemia (eight [4%] of 207 vs five [5%] of 102 patients), increased concentration of alkaline phosphatase (nine [4%] vs two [2%]), fatigue (six [3%] vs seven [7%]), and increased concentration of aspartate aminotransferase (six [3%] vs two [2%]). After 8 weeks, 17 (8%) patients in the MABp1 group and 11 (11%) in the placebo group had died, but no death was judged to be related to treatment. The incidence of serious adverse events was not significantly different in the MABp1 group and placebo groups (47 [23%] vs 33 [32%], p=0·07). INTERPRETATION: The primary endpoint was a useful means of measuring clinical performance in patients. MABp1 might represent a new standard in the management of advanced colorectal cancer. FUNDING: XBiotech

    The Natural Cytotoxicity Receptor 1 Contribution to Early Clearance of Streptococcus pneumoniae and to Natural Killer-Macrophage Cross Talk

    Get PDF
    Natural killer (NK) cells serve as a crucial first line of defense against tumors, viral and bacterial infections. We studied the involvement of a principal activating natural killer cell receptor, natural cytotoxicity receptor 1 (NCR1), in the innate immune response to S. pneumoniae infection. Our results demonstrate that the presence of the NCR1 receptor is imperative for the early clearance of S. pneumoniae. We tied the ends in vivo by showing that deficiency in NCR1 resulted in reduced lung NK cell activation and lung IFNγ production at the early stages of S. pneumoniae infection. NCR1 did not mediate direct recognition of S. pneumoniae. Therefore, we studied the involvement of lung macrophages and dendritic cells (DC) as the mediators of NK-expressed NCR1 involvement in response to S. pneumoniae. In vitro, wild type BM-derived macrophages and DC expressed ligands to NCR1 and co-incubation of S. pneumoniae-infected macrophages/DC with NCR1-deficient NK cells resulted in significantly lesser IFNγ levels compared to NCR1-expressing NK cells. In vivo, ablation of lung macrophages and DC was detrimental to the early clearance of S. pneumoniae. NCR1-expressing mice had more potent alveolar macrophages as compared to NCR1-deficient mice. This result correlated with the higher fraction of NCR1-ligandhigh lung macrophages, in NCR1-expressing mice, that had better phagocytic activity compared to NCR1-liganddull macrophages. Overall, our results point to the essential contribution of NK-expressed NCR1 in early response to S. pneumoniae infection and to NCR1-mediated interaction of NK and S. pneumoniae infected-macrophages and -DC

    Transcriptional Profiling of Chondrodysplasia Growth Plate Cartilage Reveals Adaptive ER-Stress Networks That Allow Survival but Disrupt Hypertrophy

    Get PDF
    Metaphyseal chondrodysplasia, Schmid type (MCDS) is characterized by mild short stature and growth plate hypertrophic zone expansion, and caused by collagen X mutations. We recently demonstrated the central importance of ER stress in the pathology of MCDS by recapitulating the disease phenotype by expressing misfolding forms of collagen X (Schmid) or thyroglobulin (Cog) in the hypertrophic zone. Here we characterize the Schmid and Cog ER stress signaling networks by transcriptional profiling of microdissected mutant and wildtype hypertrophic zones. Both models displayed similar unfolded protein responses (UPRs), involving activation of canonical ER stress sensors and upregulation of their downstream targets, including molecular chaperones, foldases, and ER-associated degradation machinery. Also upregulated were the emerging UPR regulators Wfs1 and Syvn1, recently identified UPR components including Armet and Creld2, and genes not previously implicated in ER stress such as Steap1 and Fgf21. Despite upregulation of the Chop/Cebpb pathway, apoptosis was not increased in mutant hypertrophic zones. Ultrastructural analysis of mutant growth plates revealed ER stress and disrupted chondrocyte maturation throughout mutant hypertrophic zones. This disruption was defined by profiling the expression of wildtype growth plate zone gene signatures in the mutant hypertrophic zones. Hypertrophic zone gene upregulation and proliferative zone gene downregulation were both inhibited in Schmid hypertrophic zones, resulting in the persistence of a proliferative chondrocyte-like expression profile in ER-stressed Schmid chondrocytes. Our findings provide a transcriptional map of two chondrocyte UPR gene networks in vivo, and define the consequences of UPR activation for the adaptation, differentiation, and survival of chondrocytes experiencing ER stress during hypertrophy. Thus they provide important insights into ER stress signaling and its impact on cartilage pathophysiology

    The status of women: Conceptual and methodological issues in demographic studies

    Full text link
    This paper explores several conceptual problems in social demographic studies of the status of women, including failure to recognize the multidimensionality of women's status and its variation across social “locations,” the confounding of gender and class stratification systems, and the confounding of access to resources with their control. Also discussed are some generic problems in the measurement of female status, such as the sensitivity of particular indicators to social context, and the need to select consistent comparisons when judging the extent of gender inequality.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45651/1/11206_2005_Article_BF01115740.pd

    Classification of current anticancer immunotherapies

    Get PDF
    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches

    Preface

    No full text

    Microglial Activation Is Modulated by Captopril: in Vitro and in Vivo Studies

    No full text
    The renin-angiotensin system (RAS) is an important peripheral system involved in homeostasis modulation, with angiotensin II (Ang II) serving as the main effector hormone. The main enzyme involved in Ang II formation is angiotensin-converting enzyme (ACE). ACE inhibitors (ACEIs) such as captopril (Cap) are predominantly used for the management of hypertension. All of the components of the RAS have also been identified in brain. Centrally located hormones such as Ang II can induce glial inflammation. Moreover, in Alzheimer’s disease (AD) models, where glial inflammation occurs and is thought to contribute to the propagation of the disease, increased levels of Ang II and ACE have been detected. Interestingly, ACE overexpression in monocytes, migrating to the brain was shown to prevent AD cognitive decline. However, the specific effects of captopril on glial inflammation and AD remain obscure. In the present study, we investigated the effect of captopril, given at a wide concentration range, on inflammatory mediators released by lipopolysaccharide (LPS)-treated glia. In the current study, both primary glial cells and the BV2 microglial cell line were used. Captopril decreased LPS-induced nitric oxide (NO) release from primary mixed glial cells as well as regulating inducible NO synthase (iNOS) expression, NO, tumor necrosis factor-α (TNF-α) and induced interleukin-10 (IL-10) production by BV2 microglia. We further obtained data regarding intranasal effects of captopril on cortical amyloid β (Aβ) and CD11b expression in 5XFAD cortex over three different time periods. Interestingly, we noted decreases in Aβ burden in captopril-treated mice over time which was paralleled by increased microglial activation. These results thus shed light on the neuroprotective role of captopril in AD which might be related to modulation of microglial activation

    Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies.

    No full text
    The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer's disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression of glial activation and AD by using AT1R blockers
    corecore