252 research outputs found

    Wrapping interactions at strong coupling -- the giant magnon

    Full text link
    We derive generalized Luscher formulas for finite size corrections in a theory with a general dispersion relation. For the AdS_5xS^5 superstring these formulas encode leading wrapping interaction effects. We apply the generalized mu-term formula to calculate finite size corrections to the dispersion relation of the giant magnon at strong coupling. The result exactly agrees with the classical string computation of Arutyunov, Frolov and Zamaklar. The agreement involved a Borel resummation of all even loop-orders of the BES/BHL dressing factor thus providing a strong consistency check for the choice of the dressing factor.Comment: 35 pages, 2 figures; v2: comments and references adde

    Modeling Oyster Reef Restoration: Larval Supply and Reef Geometry Jointly Determine Population Resilience and Performance

    Get PDF
    Restoration of native oyster (Crassostrea virginica) populations in Chesapeake Bay shows great promise after three decades of failed attempts. Population models used to inform oyster restoration had integrated reef habitat quality, demonstrating that reef height determines oyster population persistence and resilience. Larval recruitment drives population dynamics of marine species, yet its impact with reef height and sediment deposition upon reef restoration is unknown. To assess the influence of reef height, sediment deposition and larval supply, we adapted a single-stage population model to incorporate stage structure using a system of four differential equations modeling change in juvenile density (J), and changes in volume of adults (A), oyster shell reef (R), and sediment (S) on an oyster reef. The JARS model was parameterized with empirical data from field experiments. Larval supply included larvae from the natal population and from outside populations. The stage-structured model possessed multiple non-negative equilibria (i.e., alternative stable states). Different initial conditions (e.g., oyster shell reef height) resulted in different final states. The main novel findings were that the critical reef height for population persistence and resilience was jointly dependent on sediment input and larval supply. A critical minimum larval supply was necessary for a reef to persist, even when initial sediment deposition was zero. As larval supply increased, the initial reef height needed for reef persistence was lowered, and oyster reef resilience was enhanced. A restoration oyster reef with higher larval influx could recover from more severe disturbances than a reef with lower larval influx. To prevent local extinction and assure a positive population state, higher levels of larval supply were required at greater sediment concentrations to overcome the negative effects of sediment accumulation on the reef. In addition, reef persistence was negatively related to sediment deposited on a reef prior to larval settlement and recruitment, implying that restoration reefs should be constructed immediately before settlement and recruitment to minimize sediment accumulation on a reef before settlement. These findings are valuable in oyster reef restoration because they can guide reef construction relative to larval supply and sediment deposition on a reef to yield effective and cost-efficient restoration strategies

    Towards a comprehensive understanding of p75 neurotrophin receptor functions and interactions in the brain

    Get PDF
    The role of neurotrophins in neuronal plasticity has recently become a strong focus in neuroregeneration research field to elucidate the biological mechanisms by which these molecules modulate synapses, modify the response to injury, and alter the adaptation response. Intriguingly, the prior studies highlight the role of p75 neurotrophin receptor (p75(NTR)) in various injuries and diseases such as central nervous system injuries, Alzheimer's disease and amyotrophic lateral sclerosis. More comprehensive elucidation of the mechanisms, and therapies targeting these molecular signaling networks may allow for neuronal tissue regeneration following an injury. Due to a diverse role of the p75(NTR) q in biology, the body of evidence comprising its biological role is diffusely spread out over numerous fields. This review condenses the main evidence of p75(NTR) for clinical applications and presents new findings from published literature how data mining approach combined with bioinformatic analyses can be utilized to gain new hypotheses in a molecular and network level.Peer reviewe

    Ultrathin oxynitride films for CMOS technology, Journal of Telecommunications and Information Technology, 2004, nr 1

    Get PDF
    In this work, a review of possible methods of oxynitride film formation will be given. These are different combinations of methods applying high-temperature oxidation and nitridation, as well as ion implantation and deposition techniques. The layers obtained using these methods differ, among other aspects in: nitrogen content, its profile across the ultrathin layer, ... etc., which have considerable impact on device properties, such as leakage current, channel mobility, device stability and its reliability. Unlike high-temperature processes, which (understood as a single process step) usually do not allow the control of the nitrogen content at the silicon-oxynitride layer interface, different types of deposition techniques allow certain freedom in this respect. However, deposition techniques have been believed for many years not to be suitable for such a responsible task as the formation of gate dielectrics in MOS devices. Nowadays, this belief seems unjustied. On the contrary, these methods often allow the formation of the layers not only with a uniquely high content of nitrogen but also a very unusual nitrogen profile, both at exceptionally low temperatures. This advantage is invaluable in the times of tight restrictions imposed on the thermal budget (especially for high performance devices). Certain specific features of these methods also allow unique solutions in certain technologies (leading to simplifications of the manufacturing process and/or higher performance and reliability), such as dual gate technology for system-on-chip (SOC) manufacturing

    Oxidation kinetic sof silicon strained by silicon germanium, Journal of Telecommunications and Information Technology, 2007, nr 3

    Get PDF
    This paper reports on the studies of oxidation kinetics of silicon strained by silicon germanium layers. Experimental results of natural, chemical and thermal oxide formation are presented. The oxidation rates of silicon strained by SiGe layers have been compared with the rates of pure Si oxidation. The oxidation kinetics was studied using the parallel model proposed by Beck and Majkusiak. This model was fitted with good result to the obtained experimental data and the parameter that is most probably responsible for the strain effect was identified, as well as its dependence on Ge content in the SiGe layer

    Quantum phenomena inside a black hole: quantization of the scalar field iniside horizon in Schwarzschild spacetime

    Full text link
    We discuss the problem of the quantization and dynamic evolution of a scalar free field in the interior of a Schwarzschild black hole. A unitary approach to the dynamics of the quantized field is proposed: a time-dependent Hamiltonian governing the Heisenberg equations is derived. It is found that the system is represented by a set of harmonic oscillators coupled via terms corresponding to the creation and annihilation of pairs of particles and that the symmetry properties of the spacetime, homogeneity and isotropy are obeyed by the coupling terms in the Hamiltonian. It is shown that Heisenberg equations for annihilation and creation operators are transformed into ordinary differential equations for appropriate Bogolyubov coefficients. Such a formulation leads to a general question concerning the possibility of gravitationally driven instability, that is however excluded in this case.Comment: 12 page

    Multiplying unitary random matrices - universality and spectral properties

    Full text link
    In this paper we calculate, in the large N limit, the eigenvalue density of an infinite product of random unitary matrices, each of them generated by a random hermitian matrix. This is equivalent to solving unitary diffusion generated by a hamiltonian random in time. We find that the result is universal and depends only on the second moment of the generator of the stochastic evolution. We find indications of critical behavior (eigenvalue spacing scaling like 1/N3/41/N^{3/4}) close to θ=π\theta=\pi for a specific critical evolution time tct_c.Comment: 12 pages, 2 figure

    RTME: Extension of Role-Task Modeling for the Purpose of Access Control Specification

    Full text link

    Spontaneous pregnancy at term with uterus didelphys: a case report

    Get PDF
    The uterus didelphys results from the absence of fusion of the bilateral mullerian ducts. It is a rare pathology. This malformation concerns 5% of uterine malformations from mullerian ducts and affects one woman in 1,000-30,000. Obstetrical complications of this malformation are numerous. The chance of reaching term for pregnancies with didelphys uterus is reported as 20%–30%. Authors report a case of spontaneous term pregnancy in a 21-year-old primiparous woman with a didelphic uterus. The patient had an unexplained seizure with fetal bradycardia. An emergency cesarean section was performed and allowed the birth of a hypotropic neonate of 2240g and the discovery of didelphic uterus. Pregnancy developed in the left hemi-uterus. Speculum examination at the end of the procedure showed a longitudinal vaginal septum. There was no associated urinary tract and renal malformation. Scheduled cesarean will be performed from her next pregnancy. The uterus didelphys should be diagnosed early. MRI and 3D echography are necessary for diagnosis. Pregnancy is often complicated, and follow-up needs to be planned. Cesarean section is not systematic
    corecore