7 research outputs found

    Complete mitogenome sequence of Anopheles coustani from São Tomé island

    Get PDF
    We report the first complete mitogenome (Mt) sequence of Anopheles coustani, an understudied malaria vector in Africa. The sequence was extracted from one individual mosquito from São Tomé island. The length of the A. coustani Mt genome was 15,408 bp with 79.3% AT content. Phylogenetic analysis revealed that A. coustani is most closely related to A. sinensis (93.5% of identity); and 90.1% identical to A. gambiae complex members.publishersversionpublishe

    The origin of island populations of the African malaria mosquito, Anopheles coluzzii

    Get PDF
    Funding Information: This work was supported by grants from the UC Irvine Malaria Initiative Program, Open Philanthropy and NIH R56 grant (R56AI130277). We thank the National Malaria Control Program personnel from São Tomé and Príncipe and, Ministry of Health in São Tomé and Príncipe who facilitated our field collections in São Tomé. We thank the Centre International de Recherches Médicales de Franceville (Franceville, Gabon) for the collections in Gabon. Publisher Copyright: © 2021, The Author(s).Anopheles coluzzii is a major malaria vector throughout its distribution in west-central Africa. Here we present a whole-genome study of 142 specimens from nine countries in continental Africa and three islands in the Gulf of Guinea. This sample set covers a large part of this species’ geographic range. Our population genomic analyses included a description of the structure of mainland populations, island populations, and connectivity between them. Three genetic clusters are identified among mainland populations and genetic distances (FST) fits an isolation-by-distance model. Genomic analyses are applied to estimate the demographic history and ancestry for each island. Taken together with the unique biogeography and history of human occupation for each island, they present a coherent explanation underlying levels of genetic isolation between mainland and island populations. We discuss the relationship of our findings to the suitability of São Tomé and Príncipe islands as candidate sites for potential field trials of genetic-based malaria control strategies.publishersversionpublishe

    The origin of island populations of the African malaria mosquito, Anopheles coluzzii

    No full text
    International audienceAnopheles coluzzii is a major malaria vector throughout its distribution in west-central Africa. Here we present a whole-genome study of 142 specimens from nine countries in continental Africa and three islands in the Gulf of Guinea. This sample set covers a large part of this species' geographic range. Our population genomic analyses included a description of the structure of mainland populations, island populations, and connectivity between them. Three genetic clusters are identified among mainland populations and genetic distances (F ST) fits an isolation-by-distance model. Genomic analyses are applied to estimate the demographic history and ancestry for each island. Taken together with the unique biogeography and history of human occupation for each island, they present a coherent explanation underlying levels of genetic isolation between mainland and island populations. We discuss the relationship of our findings to the suitability of São Tomé and Príncipe islands as candidate sites for potential field trials of genetic-based malaria control strategies
    corecore