731 research outputs found

    Robot welding process control

    Get PDF
    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon

    Robot welding process control development task

    Get PDF
    The completion of, and improvements made to, the software developed during 1990 for program maintenance on the PC and HEURIKON and transfer to the CYRO, and integration of the Rocketdyne vision software with the CYRO is documented. The new programs were used successfully by NASA, Rocketdyne, and UAH technicians and engineers to create, modify, upload, download, and control CYRO NC programs

    Welding process modelling and control

    Get PDF
    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control

    Advertising Injury Coverage Analysis for Trademark and Trade Dress Infringement Claims in Texas: As Easy as One, Two, Three

    Get PDF
    Texas courts should not make the determination that trademark and trade dress infringement claims should be unconditionally covered as advertising injury because Texas common law, its rules of policy construction, and general trademark and trade dress law militate against such a finding. Rather, each claim should be analyzed case-by-case, based on the particular allegations made and the coverage afforded. The purpose of this Comment is to provide a framework to assist the courts in analyzing coverage for trademark and trade dress claims under the CGL in Texas

    Investigation of Machine Design for Friction Stir Welding

    Get PDF
    The process of joining two pieces of metal together has not significantly changed over the last few decades. The basic idea used is to bring the pieces together and apply enough heat to melt the metal at the interface. The molten metal mixes and after cooling forms a strong joint. This process is called the fusion process. The most significant difference between the many fusion processes is how the heat is generated and applied. The Welding Institute (TWI), in Great Britain, has recently patented an innovative application of mechanical friction. TWI designed a tool and process called Friction Stir Welding (FSW) that uses friction to heat the metal to within a few hundred degrees Fahrenheit of melting, just to the point of being plastic-like. The tool then stirs the plasticized metal together forming a joint that has been shown to be as good or better than an equivalent fusion joint. The FSW process is well suited for the joining of the aluminum alloys used in the aerospace industry. The relatively low melting point of aluminum eliminates the requirements for exotic materials for pin tool design. The FSW process has been successfully used to join alloys such as 7075 which were before considered "unweldable", and aluminum-lithium 2195 which exhibits many problems when fusion welded. The objective this summer was to investigate the design of a FSW system that could take this process from the laboratory to the manufacturing floor. In particular, it was the goal of my NASA colleague to develop a concept for applying the FSW process to the manufacturing of aluminum cryogenic oxygen and hydrogen tanks, of the sort used to make the Shuttle External Tank

    Automated data acquisition technology development:Automated modeling and control development

    Get PDF
    This report documents the completion of, and improvements made to, the software developed for automated data acquisition and automated modeling and control development on the Texas Micro rackmounted PC's. This research was initiated because a need was identified by the Metal Processing Branch of NASA Marshall Space Flight Center for a mobile data acquisition and data analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC based system was chosen. The Welding Measurement System (WMS), is a dedicated instrument strickly for use of data acquisition and data analysis. In addition to the data acquisition functions described in this thesis, WMS also supports many functions associated with process control. The hardware and software requirements for an automated acquisition system for welding process parameters, welding equipment checkout, and welding process modeling were determined in 1992. From these recommendations, NASA purchased the necessary hardware and software. The new welding acquisition system is designed to collect welding parameter data and perform analysis to determine the voltage versus current arc-length relationship for VPPA welding. Once the results of this analysis are obtained, they can then be used to develop a RAIL function to control welding startup and shutdown without torch crashing

    Welding rework data acquisition and automation

    Get PDF
    Aluminum-Lithium is a modern material that NASA MSFC is evaluating as an option for the aluminum alloys and other aerospace metals presently in use. The importance of aluminum-lithium is in it's superior weight to strength characteristics. However, aluminum-lithium has produced many challenges in regards to manufacturing and maintenance. The solution to these problems are vital to the future uses of the shuttle for delivering larger payloads into earth orbit and are equally important to future commercial applications of aluminum-lithium. The Metals Processes Branch at MSFC is conducting extensive tests on aluminum-lithium which includes the collection of large amounts of data. This report discusses the automation and data acquisition for two processes: the initial weld and the repair. The new approach reduces the time required to collect the data, increases the accuracy of the data, and eliminates several types of human errors during data collection and entry. The same material properties that enhance the weight to strength characteristics of aluminum-lithium contribute to the problems with cracks occurring during welding, especially during the repair/rework process. The repairs are required to remove flaws or defects discovered in the initial weld, either discovered by x-ray, visual inspection, or some other type of nondestructive evaluation. It has been observed that cracks typically appear as a result of or beyond the second repair. MSFC scientists have determined that residual mechanical stress introduced by the welding process is a primary cause of the cracking. Two obvious solutions are to either prevent or minimize the stress introduced during the welding process, or remove or reduce the stress after the welding process and MSFC is investigating both of these

    Public Discussion of Anthrax on Twitter: Using Machine Learning to Identify Relevant Topics and Events

    Get PDF
    Background: Social media allows researchers to study opinions and reactions to events in real time. One area needing more study is anthrax-related events. A computational framework that utilizes machine learning techniques was created to collect tweets discussing anthrax, further categorize them as relevant by the month of data collection, and detect discussions on anthrax-related events. Objective: The objective of this study was to detect discussions on anthrax-related events and to determine the relevance of thetweets and topics of discussion over 12 months of data collection. Methods: This is an infoveillance study, using tweets in English containing the keyword “Anthrax” and “Bacillus anthracis”, collected from September 25, 2017, through August 15, 2018. Machine learning techniques were used to determine what people were tweeting about anthrax. Data over time was plotted to determine whether an event was detected (a 3-fold spike in tweets). A machine learning classifier was created to categorize tweets by relevance to anthrax. Relevant tweets by month were examined using a topic modeling approach to determine the topics of discussion over time and how these events influence that discussion. Results: Over the 12 months of data collection, a total of 204,008 tweets were collected. Logistic regression analysis revealed the best performance for relevance (precision=0.81; recall=0.81; F1-score=0.80). In total, 26 topics were associated with anthrax-related events, tweets that were highly retweeted, natural outbreaks, and news stories. Conclusions: This study shows that tweets related to anthrax can be collected and analyzed over time to determine what people are discussing and to detect key anthrax-related events. Future studies are required to focus only on opinion tweets, use the methodology to study other terrorism events, or to monitor for terrorism threats

    Site alteration effects from rocket exhaust impingment during a simulated Viking Mars landing. Part 1: Nozzle development and physical site alternation

    Get PDF
    A potential interference problem for the Viking '75 scientific investigation of the Martian surface resulting from retrorocket exhaust plume impingement of the surface was investigated experimentally and analytically. It was discovered that the conventional bell nozzle originally planned for the Viking Lander retrorockets would produce an unacceptably large amount of physical disturbance to the landing site. An experimental program was subsequently undertaken to find and/or develop a nozzle configuration which would significantly reduce the site alteration. A multiple nozzle configuration, consisting of 18 small bell nozzles, was shown to produce a level of disturbance that was considered by the Viking Lander Science Teams to be acceptable on the basis of results from full-scale tests on simulated Martian soils

    Interactive book reading to accelerate word learning by kindergarten children with Specific Language Impairment (SLI): Identifying adequate progress and successful learning patterns

    Get PDF
    PURPOSE. The goal of this study was to provide guidance to clinicians on early benchmarks of successful word learning in an interactive book reading treatment and to examine how encoding and memory evolution during treatment contribute to word learning outcomes by kindergarten children with SLI. METHOD. Twenty-seven kindergarten children with SLI participated in a preliminary clinical trial using interactive book reading to teach 30 new words. Word learning was assessed at four points during treatment through a picture naming test. RESULTS. The results indicate that the following performance during treatment was cause for concern, indicating a need to modify the treatment: naming 0-1 treated words correctly at naming test 1; naming 0-2 treated words correctly at naming test 2; naming 0-3 treated words correctly at naming test 3. In addition, the results showed that encoding was the primary limiting factor in word learning but retention also contributed (albeit to a lesser degree) to word learning success. CONCLUSION. Case illustrations demonstrate how a clinician’s understanding of a child’s word learning strengths and weaknesses develop over the course of treatment, substantiating the importance of regular data collection and clinical decision-making to ensure the best possible outcomes for each individual child
    corecore