
-£

FINAL TECHNICAL REPORT

ROBOT WELDING PROCESS CONTROL DEVELOPMENT TASK

9 May 1991 through 8 May 1992
Contract Number NAS8-36955

Delivery Order # t 20

Preparedfor:

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

o0
oO

I
ee_
O"
Z

q_
t_

V
C

o0
t_
QO
eq
,,t"
e-4

O

19 October 1992

by

Peter L. Romine

Electrical and Computer Engineering Department

The University of Alabama in Huntsville

Huntsville, Alabama 35899

tg_tU
Z ,_ ll:

a0
.Jl-- CL
wZ !
3[UJ d"

I,.- C_. O"
000"

C3W

_C

0 m

b-O_

Z_,.O _

https://ntrs.nasa.gov/search.jsp?R=19930009662 2020-03-17T07:24:29+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42809069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c

_- Report Oo_tation Page

• FleDort No. 2. G_vernmem Accmm_rt No. 3. R_rs Cataloq No.

4 _tle aria Subtme 5. Repa't Oat8

Robot Welding Process Control Development Task

7, Aumons)

Peter L. Romine
%

9. Performm90rgwtl,lUlrJ_ Nm Ina Aalr_B

University of Alabama in Huntsville

ElcctncaJ and Computer Engineenng Department

Huntsville, AL 35899

"2. SlmllOtr41A_ Nim_ ina Am

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

George C. Marshall Space Right Center

Dec 1992

6. Performm 90rgantzaDon Code

8. Performing Organtzatmn Rel=_rNo.

10. Work Urut No.

11. Contract or Grant No.

NAS8-36955 DO #120

13. Type o_ R¢IIION l_ Prmo_COVll_-

Final Technical

May 1992

14. SDonsormq Agency Code

15. 5u=_w_mmt Noum

;6. Abstract

The final technical report for the period 9 .May 1991 t_rough 8 May 1992.

t7. Key Words ISuggsltlKl 0%'Authorts)| 18. Distnbutlon Statement

Unclassified

'9. Securm¢ Clamd. lot mi= fet_Drt)

Unclassified

NASA FORM 1621 OCT

t 20. Secunw C.,tam*. lot tt_ pe_j

: Unclassified /
/

22. P.cll

TABLE OF CONTENTS

CHAPTER PAQE

3.0

4.0

5.0

Introduction

Software Developments.
2.1 Introduction

2.2 User Interface

2.3 Cyro Tape Development.
2.4 Heurikon Vision Software

Hardware Developments.

3.1 CYRO Air-conditioning .

3.2 CYRO Tape Switch

Welding Process Measurement and Control Systems

4.1 MIDSOUTH Model-based System
4.2 INTA Laser Seam Tracker

Conclusions and Recommendations .

9

9

9

i0

APPENDIX

A.

B.

C.

CYRO Boot and TU58 Software Listings

New PC Menu Listing.

HEURIKON Software Listings

PAG _

12

27

30

2

1.0 INTRODUCTION

This report documents the completion of, _and improvements made to, the

software developed during 1990 for program maintenance on the PC and I-IELrR_ON

and transfer to the CYRO, and integration of the Rocketdyne vision software with the

CYRO. The new programs have been used successfully by NASA, Rocketdyne, and

UAFI technicians and engineers to create, modify, upload, download, and control CYRO

NC programs.

3

2.0 SOFTWARE DEVELOPMENTS

2.1 Introduction

Software development was concentrated in three areas:

• Improve user interface for easy use by persons not experienced in computer

operation.

• Simplify the software cycle for new CYRO executive tapes to eliminate the need

to travel between three sites with magnetic tapes.

• Modification of Rocketdyne vision software to use the HEURIKON serial port to

send offsets to the CYRO through its serial port.

The approach in all software development is to start development on the PC, and carry

this development on the PC as long as possible. This is desirable due to the superiority of

available editors, compilers, debug tools, and development utilities for the PC that are

not available or are very costly on the HEURIKON or similar system. Further, work can

be accomplished at any site with a PC, this is especially important considering the harsh

working environment of the Building 4705 highbay.

The programs are designed to be easily ported from one machine environment to

another. Once a program is operating properly on the PC it is then transferred to the

HELYRIKON.

4

I

2.2 User Interface

The sotS'are developed in 1990 required the operator to remember the name and

proper usage of six to ten programs. It was quicldy discovered, during training sessions,

that this was not acceptable, considering the diversitv of the users and the potentially

long period of time between uses of the software.

A new menu-driven user interface, Figure i, was developed to go on top of the

existing robot communication and control software. The menu is built from the batch

processing commands that are a standard part of DOS on the PC and translatable to the

shell commands available on the HEURIKON.

C_O-PCMENU

A Directory of programs on PC disk
B Directory of programs on CYRO
C Rcc.ormect PC to CYRO

D List a NC program on the PC

E Save a program FROM CYRO TO PC
F Load a program TO CYRO FROM PC

G RUN program Ioade_l on the CYRO

H HALT a program running on CYRO

I Edit program on PC using MS WORD

I Edit program on PC using Q-EDIT

K Send program listing to printer
L Resequene¢ program on PC

DEFAULT DIRECTORY [XCYRO]

Enter a letter from A to L

(or type Esc to quit)

....... Enter a letter from A to L
II

Figure 1. New user interface menu.

The new user interface is now the preferred way NC programs are maintained and

loaded to the CYRO.

5

2.3 CYRO Tape Development

The previous software development cycle for new CYRO executive tapes allowed

the programmer to edit and compile the CYRO program remotely using the network.

However, it was necessary to then physically transt_r, via magnetic tape, the new

executable to a third machine equipped to write the new executive tape on a TU58 data

cartridge. This process discouraged development of new executive tapes. New programs

were developed to streamline the development cycle.

The problem was solved by developing two programs, BOOTCYRO.EXE and

MAKETAPE.EXE. Through research into the structure of the PDPI 1/23 boot image and

TU58 tape drive, the BOOTCYRO program was developed to boot the CYRO directly

from a captured boot image file via the PC. With the CYRO serial card set to 38.4 K

BAUD, the time required to boot the CYRO was lowered from the 120 seconds required

by tape to 20 seconds with the PC.

The initial version of the program required an input file captured from an existing

executive tape. Later versions were developed to accept the SEN.TSK file directly as

generated by the SCATS compiler. The BOOTCYRO program now allows a

programmer to modify the CYRO program, compile and link to create a new .TSK file,

transfer the .TSK file over the network to the PC or HEURIKON, and boot the CYRO

with the new executive program, all without leaving the CYRO workcell in building

4705.

The MAKETAPE program was developed tosupport writingof TU58 tapesvia

the PC or HEURIKON, using the TU58 tape drive built into the CYRO. This program

can take the raw .TSK file and create a new executive tape or it can make a copy of an

existing TU58 tape. This program also eliminates the need for the RT1 IUTL,

EXCHANGE, and ZAPTU58 programs in the development cycle.

L

2.4 HEURIKON Vision Software

Software was developed by Rocketdyne in California, to accept images of the

weld path gathered by a camera mounted in the torch, perform image processing on the

images to detect the seam, and then send offsets to the robot in order to track the seam.

The system was developed and demonstrated to work in California on a similar

HEURIKON computer system with a different robot. It is desired to adapt this software

to operate on the HEURIKON computer at MSFC with the CYRO robot in building

4705.

In discussions with Dave Gutow of Rocketdyne Canoga Park, it was determined

that the special communications between the vision software on the HEURIKON and the

CYRO is best handled in the SENCON.C program file. Dave Gutow designed his

software to use a shared data structure and the functions in SENCON.C were written

with provision for the requirements at MSFC.

In Canoga Park, a seperate processor card communicates with the robot and

updates the shared data structure. At MSFC, a software process running under UNIX has

been developed to communicate with the CYRO and alter the data structure as

appropriate.

7

3.0 HARDWARE DEVELOPMENTS

3.1 CYRO Air-conditioning

The extreme heat generated in the HEURIKON cabinet, worsened by the high

temperatures experienced in the un air-conditioned CYRO work cell, resulted in a disk

crash in July 1991. Several months were required to rebuild the system. A dedicated air-

conditioner was installed on the HEURIKON cabinet to prevent future crashes and

prolong the life of the HEURIKONs components.

3.2 CYRO Tape Switch

A rotary switch was added to the CYRO front panel to simplify the connections

between the PC/HEURIKON, CYRO TU58, and CYRO Serial Port. The knob has three

positions to allow the CYRO to boot from tape, boot from an external device, or connect

external device to the TU58.

8

4.0 WELDING PROCESS MEASUREMENT AND CONTROL

SYSTEMS

4.1 MIDSOUTH Model-Based System

The MIDSOUTH was delivered and demonstrated. The system contains an

80286 processor board, 80386 processor board, data acquisition, and signal conditioning

hardware in a VME cardcage. The process monitoring and control software is written in

C to operate under Microsoft windows.

Basic operation of the system was verified to assist in evaluation of the possible

applications of the system, as-is or as a parts platform tbr other projects.

4.2 INTA Laser Seam Tracker

The INTA laser seam tracker was delivered in pieces, non-operational, and with

limited documentation. Inaccuracies in the wiring diagrams were discovered during the

re-connection of the units.

The MIDSOUTH system was used to download the INTA software to the 68030

processor; this requires 2 to 3 minutes. A BIT3 interface card was included but requires

a 16-bit ISA slot. The BIT3 card is claimed to complete a download in 15 seconds.

The INTA system detects the seam by measuring scatter laser light. The light is

applied to the work-piece by reflecting a laser beam emitted from a fiber optic cable. A

semiconductor laser is connected to a lens/collimator assembly by the fiber optic cable.

The lens assembly includes a pinhole which must be precisely aligned to allow the laser

light to pass through. This alignment was disturbed in shipping or during assembly and

several weeks were required to realign it.

After realignment, the system was checked-out and it operated as described in the

documentation.

9

5.0 CONCLUSIONS AND RECOMMENDATIONS

The PC version of the new NC development software has been used by most of

the CYRO users. The HEURIKON version has not been warmly received due to the

greater complexity in operating the HEURIKON and the unfamiliar vi editor.

The arrival of the new robots and welding controllers has prompted a reevaluation

of the focus and role of the CYRO and HEURIKON in the NASA mission. The welding

controller originally planned for the CYRO has now been teamed with a more modern

robot arm. The serial communications interface of the CYRO and HEURIKON is now

very robust and well understood. Electrically, the CYRO and/or HEURIKON can now

be easily connected to any of the new robot or welding controllers. The age of the

HEURIKON technology is now an important consideration in its role with welding

process control. However, the VME-based construction of the HEURIKON will support

upgrades to faster processors and peripherals, well into the future.

The vision system changes are still to be tested. A compatibility problem with

the compiler and configuration and/or hardware problems with the VRTX processor have

hampered this development. Progress with the vision system was severly hampered due

to the lack of modern software development tools.

The HEURIKON, MIDSOUTH, and INTA a three separate systems that have

never been fully functional. The HEURIKON system software is out of date and lacking.

Both the HEURIKON and INTA have powerful and reusable hardware. The 1NTA

system does not have a disk or operating system. Combining the HEURIKON and INTA

hardware and adding modem, up to date software tools would make for a very powerful

system lbr welding process control.

The PC nature of the MIDSOUTH system makes for a powerful software

development platform. However, the VME based hardware has not proven ideal

combination to the point.

10

Dueto therelativelyslowratesencounteredin theweldingprocess,theserial

interfaces common to the CYRO, HEURIKON, MIDSOUTH, INTA, and new robot, are

sufficient. As the need arises tbr higher speed communications, high speed interface

cards such as those made by BIT3 will work.

11

APPENDICES

APPENDIX A

CYRO BOOT and TU58 Software Listings

l!

/* BOO_t_O.C --- Program to boot the CYRO750 ROBOT from a .TSK image file*/

/* Written by Peter L. Rom_Ine i990,91

** _nlverslty of A/abama, Huntsville

"* Zlectrlcal and Computer Engzneerlng Department

_inciude "cyro.h"

#pragma check stack (off)

static CYRO msg;

UCHAR

b_k0[]={_76___225__2_______54'__8__92_____3_______48_3_3_247_9_6___25____5_______95_l44

,IIB,255,223,139,116,255,253,128,135,0};

UCEAR blk6[]=(l,0,0,0,1,0,0,0,S,O,0,4,225,121,0,0,254,118,110,0,0,0,179,7,0,2,0,

0,0,0,0,0,138,1,0,0,0,0,0,8};

_define DATASIZ 60000

static UCKAR data[DATASIZ];

long data ptr,data_len;

int pkt=0;

struct

[

UC_AR flag;

UCKAR len:

UCKAR opcode:

UCFh_R modifier;

UCF[AR unit;

UC}{AR switches;

UCHAR seq_lo:

UCKAR seq hi;

UCEAR cnt io;

UCEAR cnt--hi:

UCKAR blk--lo:

UCHAR blk-ni;

UC_AR chk_lo;

UC?LAR chk hi;

} cmd_pkt;

struct

UCI{AR flag;

UC}_iR len;

UCHAR data[128];

UC_R chk_lo;

UCffAR chk hi;

I data pkt;

:nt main(int argc, char **argv)

{

int blk_strt,blk end;

FILE *fp,"fp0;

long byte_cnt, i;

UCKAR chk l, chk h:

long lobyte, hibyte;

long chk, a=O,b=O,c=O;

connect aeriaI(COMM2,RESTORE ON EXIT);

if(! (fp = fopen(arqv[l],"rb")))

exit(l);

for(\=O; i<DATASIZ; i++) data[i] = O;

printf("Rd 0 %d\n",a=fread(data, l, (size_t)1024, fp));

fpO = fopen("tu58 4.cln","rb");

printf("Rd 1 %dkn",a=fread(data, l, (size t)2048, fp0));

printf("Rd 2 %d\n",b=fread(&(data[2048][,l, (size t)30720,fp)); /* rd blk 0 */

printf("Rd 3 %din",c=fread(&(data[32768]),l, (size_t)30720, fp)); /* rd blk 8 */
fclose(fpO);

data_ptr = 0L;

data fen = a + b + c;

printf("BUFFER SIZE = %Idkn",data len);

printf("\nWaiting for INIT from C_ROkn"); while(s_getch2() != 0x04);
while(s_getch2() != 0x04);

s_putch2(Oxl0); /* send continue */

/* get command to read block 0 */

get_command();

print command();

printf("\nSending block 0 to CYROkn"): /* Send block 0 */

send data();

/* get command to read block 6 */

get_command();

12

PRECEDING P_43E _ :,_".... ,-_,._ P;OT F!LMEt,

prlnt co,and():

prlntf("\nSending dir to CYRO\n"); /2 Send block 6 */

send data();

/* get command to read block 8 */

get command();

print command(};

printf("\nSendinq Program to CYROXn"):

/* Send block 8a _/

send data();

prlntf("knTransmlssion to CYRO complete!\n");

print_command()

(

printf("%d %d %d %d %d %d _:d _d %d _d _d %d %d %din", cmd pkt.flag

,cmd_pkt.len

,cmd_pkt.opcode

,cmd_pkt.modifier

,cmd_pkt._it

,cmd pkt.switches

,cmd_.pkt.seq_lo

,cmd pkt.seq hi

,cmd pkt.cnt lo

,cmd__pkt.cnt_hi

,cmd pkt.blk io

,cmd_pkt.blk hi

,cma pkt.chk_lo

,cmd pkt.chk hi);

get_command()

{

cmd pkt.flag = s_getch2();

cmd_pkt.len = s_getch2();

cmdpkt.opcode = s_getch2

cmd_pkt.modifier _ s getch2

cmd pkt. L_it = s_getch2

cmd__pkt.s_ritches = s getch2

cmd pkt.seq io = s getch2

cmdpkt.seq__hi = s_getch2

cmdpkt.cnt_lo = s_getch2

cmdpkt.cnt_hi = s_getch2(

cm_ pkt.blk lo = s getch2(

cmd_pkt.blk_hi - s_getch2(

cmd pkt.chk_lo = s_getch2(

cmd pkt.chk_hi = s_getch2(

);

);

);
);
);
];
);
);
);
);
)7
);

send data ()

{

long blk strt, blk_end, i;

long byte cnt;

UC_R chk _,chk h;

long lobyte,hibyte;

unsigned long chk;

byte_cnt z 256L*(long)(cmd pkt.cnt_hi) + (long) (cmd_pkt.cnt_lo);
while(byte_cnt)

(

s putch2(1);
s__Dutch2(128);

chk = 128L*256L + IL;

blk strt - data_ptr;

blk--end = blk strt + 128L;

forTi-blk_strt; i<blk_end; i+_2L)
(

s putch2_data[i]);

s_putch2(data[i+l]);

chk += (unsigned long)data[i]

+ (unsigned long)(256L*(unsigned long)data[\+l]);

if(chk > 0xffffL)

chk -= 0xffffL;

}
chk h = (UCKAR)(chk/256L);

chk--i = (UCKAR)(chk - ((unsigned long)chk h * 256L));

s putch2(chk_l);

s_putch2(chk_h);

13

byte_cnt -= 128L;

data_ptr += 128L;

pkt++;

if(!(pkt%10))

prlntf("Packet %d\r",pkt);

)

chk = 2626L;

chk += (t_signed long) {cmd_pkt.cnt io)

+ (unsigned long)(256L_(unsigned long)(cmd pkt.cnt_hi));

if(chk > 0xffffL)

chk -= 0xffffL;

chk h = (UCHAR) (chk/256L);

chk-I = (UCHAR) (chk - (_unslgned long)chk h * 256L));

s_putch2(2);

s putch2(10);

s_putch2(64);

s putch2(0);

s_putch2(0);

s_putch210);

s putch2_0);

s_putch2(0);

s_putch2(cmd pkt.cnt io);

s_putch2(cmd_pkt.cnt_hi);

s putch2(0];

s putch2(0];

s putch2(chk i);

s putch2{chkZh);

14

/*CAPTURE.C -- Program tocapturethedataloadedintothe CYRO750 ROBOT during*/

/* a boot from tape*/

/* Written by

*S

*/

Peter L, Romine t990,91

University of Alabama, Huntsville

Electrical and Computer Engineering Department

_nclude "cyro.h"

#pragma cheekstack (off)

FILE *fp;

int s_getc2(void)
{

while(!inp__cnt20)

iff kbhit0)

fclose(tp);
exit(l);

return inp_char20;

int main(int argc, char **argv)

{
conneet.serinl(COMM2,RESTORE ON EXIT):.

if(!(fr,= fopen(argv[l],"wb")))
{

perror(argv[q);
exit(l);

}

w_le(!)
rputc(s_.getc20,fp);

15

/* MAKETAPE.C --- Program to create a new executive tape using the TU58 drive */
built into the CYRO750 ROBOT */

/* Written by

*!

Peter L. Romine 1990,91

University of Alabama, HumsviUe

Electrical and Computer Engineering Department

_nclude "cyro.h"

#pragma check_stack (off)

static CYRO msg;

#define DATASIZ 60000

static UCHAR data[DATASIZ];

long data._ptr, data ien;

int pkt=0;
struct

{
UCHAR flag;
UCHARIen;

UCHARopcode;
UCHAR modifier;

UCHARunit;

UCHAR switches;

UCHAR seq__io;

UCHAR seq_hi;

UCHAR ent_lo;

UCHAR ent_hi;
UCHAR blk_lo;

UCHAR blk_hi;

UCHAR chk_lo;

UCHAR chk_hi;
} cmd_pkt;

OCHaRflag
UCHAR len;

UCHARdata[128];

UCHAR chk_lo;
UCHAR chk_hi;

} data_pkt;

16

intmam(intarge,char**ar_)

int blk_sm,blkend, ch;

FILE *f-p,*fpO;
long byte cnt,i;

UCI-I/_ chk_i,chk_h.s;

long lobyte.hibyte;

long chk.a=O,b=O,c=0;
UCHAR cnt l,cnt_h;

connect serial(COMM2,RE STORE _ON_E._T);

if(!(fp = fopen(argv[l],"rb")))
exit(l),

/* Initialize the data array to all O's */
for(i=<); i<DATASIZ; i"_-)

data[i] = o:

/* Skip over |st 1024 bytes of .tsk image */

printf("Rd 0 %dXa",a=fread(data, l,(size_t)lO24,fp));

/* Read 1st 2048 bytes from a .cln file */

fpO = fopen("tu58_4.cln","rb");
pdnttI"Rd %dkn",a=fread(data_ l,(size_t)2008,fpO));

fdo_fp0);

/* Read the program from the .tsk file */
printtI"Rd %dkn",b---fi'ead(&(data[2048]), 1,(size t)30720,fp)); 1" rd prt 1 */

pdntf("Rd %d_n",c=fread(&(data[32768]), 1,(size_t)30720,fp));/* rd prt 2 */

fdo_fv);

data_.ptr = 0L;
data_len = a + b + c;

printf("BUFFER SIZE = %ldba",data_len);

/* Send a break to the TU58

printtt"Sending BREAKS to TUSSkn");
s,md_br_20;
send_brndt20,
send_brlmk20;
*I

printt{"Sending INITs to TU58kn");
s__putch2(Ox04);

s_puteh2(Ox04);
/* wait for CONTINUE from 17558 */

while((ch=s__getch20) != OxI0)

printf("%d ",ch);

17

/* Command Packet to write Block 0 */

cmd_pkt.flag = 0x02,

cmd_pkt.len = 0x0a;
crnd_pkt.opeode = Ox03;

cmd pkt.modifier = 0x00;

cmd_pkt.umt = 0x00;

cmd_pkt.switches = 0x00;

cmd_pkt.seq_lo = 0x00;

cmd_lakt.seq_hi = 0x00;
cmd_.pkt.cnt_lo = 0x00;

cmd_pkt.cnt_hi = 0x02;

cmd__pkt.blk_lo = 0x00;
cmd_pkt.blk_hi = 0x00;

send_command0;

printf("_nWriting BLOCK 0 to TU58_");
write_data(512L);

getcommando;

printf('OPCODE -- %d_n',(int)emd .pkt.opcode);
orintf("Success Code = %dW',(int)cmd__pkt.modifier);

printf("BYTE Count = %ld_n",256L*(longXcmd_pkt.cnt_hi) + (longXcmd_pkt.cnt_lo));

printf('STATUS = %d %d_",(im)cmd_pkt.blk_lo,(int)cmd_pkt.blk_hi);

cmd__pkt.flag = 0x02;

cmd_pkt.len = 0x0a;

cmd__pkt.opcode = 0x03;

crnd_pkt.modifier = 0x00;

cmd._pkt.unit = 0x00;
crnd_.pkt.switehes = 0x00;

cmd_.pk't.seq.__lo = 0x00;

cmd__pkt.seq_hi = 0x00;

cmd__pkt.ent_lo = 0x00;
cmd__pkt.errt_hi = 0x04;

crnd__pkt.blk_io = 0x06;
cmd_.pkt.blk_hi = 0x00;

send_commandO;

printi('knWrifing BLOCK 6 to TU58_n");
write_data(1024L);

get_command0;

printtUSueeess Code = %dkn",(int)emd_.pkt.modifier);

printf("BYTE Count = %ld_",256L*(longXcmd_pkt.ent_hi) + (longXemd.pkt.cnt Io));
pfinff("STATUS = %d %d_',(int)emd__pkt.blk_lo,(im)cmd_pkt.blk_hi);

/* send WRITE command */

data_ien -= 1536L;

cnt_h = (UCHARXdata_ien/256L);

cnt__! = (UCHARXdata_len - ((unsigned Iong)ent_h * 256L));

cmd._pkt.flag = 0x02;

cmd_pkt.len = 0x0a;

crnd_pkt.opcode = 0x03;

18

cmd_pkt.modifier--0x00:
cmd_pkt.unit=0xO0;
cmdA_kt.switches=0xO0;
cmd_pkt.seq_lo= 0x00;
cmd_pkt.s__hi = 0x00,

cmd_pkt.cnt_lo = cnt_l,

cmd_pkt.cnt_hi = cat_h;

cmd pkt.blk_lo =- 0x08;
cmd_pkt.blk_hi = 0x00;

send commandO;

printf("_nWriting BLOCK 8 to TU58La");

write_data(data_len);

get_command0;

prmtf("Succes$ Code = %d_a_,(int)cmd pkt.modificr);
printf("BYTE Count = %ld_n",256L*(longXcmd_pkt.cnt_hi) + (longXcmd_pkt.cnt Io));

printf("STATUS = %d %dXn",(int)cmd pkt.blk lo,(int)cmd pkt.blk_hi);

pdntff_nTransmission to I"O58 complet¢!\n");

get command0
{

cmd_pkt.flag = s_getch20;
cmd_pkt.len = s_getch20;

¢md_pkt.opcode = s_getch20;

cmd_pktmodifier = s_getch20;
cmd pkt.unit = s_getch2();

cmd_pkt.switches= s_.getch20;

cmd_pkt.seq_.io

cmd._pkt.s_Lhi

cmd_pkt.cnt_lo
cmd_pkt.cm hi

crnd pkt.blk 1o

cmd_pkt.blk hi

cmd_pkt.chk_lo
cmd_pkt.chk_hi

= s _¢tch20;
= s getch20;
= s getch20;
= s_getch20;
= s getch20;
= s getch20;
= s .getc_.();
= s__getch2();

send_commandO
{

unsigned long chk;
UCHAR chk_t, chk__h;

chk = (unsigned IongXcmd_pkt.len)*256L + (unsigned long)trod pkt.flag;
chic +=- (unsigned [ongXctnd pkt.moditier)*256L + (unsigned iong)cmd_pkt.opcode;

chk +-- (unsigned iongXcmd pkt.switches)*256L + (unsigned long)crnd pkt.unit;

chk += (unsigned longXcmd pkt.seq_hi)*256L + (unsigned long)cmd pkt.seq_lo;

chk += (unsigned IonsXcmd_pkt.cnt hi)*256L + (unsigned long)trod pkt.cnt_lo;
chic += (unsigned longXcmd_pkt.blk_hi)*256L + (unsigned long)cmd_pkt.blk_lo;

chk_h = (UCHARXchk/256L);

chk_l = (UCHARXchk - ((unsigned long)chk_h * 256L));

]9

s_putch2fcmd_pkt.fiag);

s_putch2(cmd_pkt .Ion);

s_putch2(cmd_pkt.opcode);
s putch2(cmd_pkt, modifier);

s_putch2(cmd_pkt.umt);

s putch2(cmd_pkt.switches);

s_putch2(cmd pkt.s_L.lo),

s _putch2(crad_pkt.seq_hi);
s_putch2(cmd pkg.cnt_lo),

s_putch2(cmd_kt.cnt_hi);

s_putch2(cmd_pkt, blk_lo);

s_putch2(cmd pkt. blk_hi);
s._putch2(chk_l);

s putch2(chk h);

write_data(byte_cnti)

long bvte_cnti;

[
long byte_cnt, bIk_strt, blk_end, i,
UCHAR chk_i,chk k_t_h_cm_L c;
long Iobyte, hibyte;

unsigned long chic

byte cnt = byte_cnti;

while(byt_cm)
{

/* wait for continue */

while((c=s_getch2()) != 0xl0)
putchax(c);

s_putch2(1);

s__pmch2(128);

chk = 128L*256L + IL;

bik_strt ---data__ptr,
blk end = blk strt + 1281.;

for(i---blk strt; i<blk_ead; i+--2L)
{

s_putch2(data[i]);
s pmckt2(data[i+ 1]);

chk += (unsigned long)data[i]
+ (unsigned longX256L*(unsigned long)data[i+ !]);

if(chk > Oxat_)
chk -= OxfffIL;

chk_h = (UCHARXchK/256L);
chkJ = CUCHAR×chk - ((un_ _o.g)c__h • 256L));

2O

s

s_putch2(chk 1);
s putch2(chk_h);

b_c__cnt-= 128L_

data_ptr += 128L:

pkt++;
if(!(pkt% !O))

ptintf("Packet %d_r",pkt);

21

/* READTAPE.C -- Program to read an executive tape from the CYRO750 ROBOT */

/* Written by

*/

Peter L. Romine 1990,91

University of Alabama, Huntsville

Electrical and Computer Engineering Department

#inctude "cyro.h"

/_pragrna cheek_stack (off)

static CYRO msg;

:/define DATASIZ 60000

static UCHAR data[DATASIZ];

long data__ptr, data len;
int pkt=0;
struct
J

UCHARflag;
UCHAR len;

UCHAR opeode:
UCHAR modifier,

UCHAR unit;

UCHAR switches;

UCHAR seq 1o;
UCHAR sect_M;

UCHAR cnt_lo;

UCHAR enthi;

UCHAR blk_lo;
UCHAR blk hi;

UCHAR chk_lo;

UCHARchk hi;
} cmd _pkt;

struct

{
UCHARflag;
UCHAR len;

UCHARdata[128];
UCHARchk_lo;

UCHAR chk_hi;
} data_pkt;

22

intmain(intargc,char**argv)
{

int blk_strt, blk_end;
FILE *fp,*fpO;

long byte cnt, i;

UCHAR chk_l,chk_k,s;

long Iobyte, hibyte;
long chk, a=0,b=0,c---0;

UCHAR cnt_l,cnt_h;

cormeet_serial(COMM2,RESTORE ON EXIT);

/* Send command string to read the entire tape coments */

s_puteh2(2);
s_putch2(l 0);

s_putch2(2);

s puteh2(0);
s_putch2(0);

s_putch2(_0);

s_puteh2(0);

s_putch2_0);
s__puteh2(0);

s puteh2(2);

s_putch2(O);

s_putch2(0);

s putch2(4);
s_putch2(l 2);

w_ale(l)
printff"%d ",s_getch20);

exit(1);
)

23

I
s

/* RESEQ.C -- Program to re.sequence a NC program for the CYRO750 ROBOT */
/* Written by Peter L. Romine 1990,91

** University. of Alabama, Huntsville

** Electrical and Computer Engineering Department
*/

#include <tyro.h>

static char str I [100],str2[100];

mainfargc, argv)
int

char

{
FILE

char

int

arge;
**argv;

*fpin,*fpout:
str[80], fname[12],numstr[7];

i,j,num, len;

if(argo > 2)
{

primff"_nUSAGE: reseqp fde.nc_");
exit(1);

}

iff argo _--- 2)

strepy(fiaame, argv[1]);
else

{

printf("_nWHAT PROGRAM NAME ? ");
seaaf("%s",fmme);

fflush(stdin);

if(t(fpin----fope_(fname,"r")))
{

perrorffname);
exit(l);

}

strcl_strl,"co W ");
strcat(slr l,fimme);

streat(ml," ");
streat(stri,fmme);
strl[strlet_strl)..3] = 0;
streat(strl,".BAK");
sysmr_strl);

if(!(fpout=fopen("RESEQ$$$.TMP","w")))
{

perror("TMPFILE");
exit(l);

}

hum= 10;

24

/I

whil_ fgets_str 1,90,fpin))
¢
I

sprintRstr,"%d",num);
if(hum < 1O0)

strepy(numstr,"N00");

else if(num < 1000)

strcpy(numstr,"NO");
e[s¢

strcpy(numstr,"N");
strcat{numstr, str);

strcpy(str2,numstr);

len = strlen(stri);

i=O;

while(i <= len)

{
switch(toupper(str I [il))
{
case _:
case 'kn':

case ';':

case 'P:

case 'G':

'L':

case 'M':

case 'W':

case 'V':

case 'K':

strcat(m'2,&str I [i]);
i =len+ 1;

break;

default:

i++;

break;

fputs(str2,fpout);

num += 10;

}

relo_f#n);
fclo_fpout);

strepy(strl,"copy RESEQ$$$.TMP ");
strcat_strl,fnartm);

system(strl);

25

I

APPENDIX B

New PC Menu Listing

26

@ECHO OFF
REM CYROMENU.BAT -- DOS batch file to create user menu

gEM Written by
gEM

gEM
gEM

FMARK MENU >NUL

CALL LOADHLP

:TOP

sa bright white on blue
cls

ECho

ECho

ECho

ECho

ECho A

ECho B
ECho C

ECho D
ECho E

ECho F

ECho

ECho
ECho

ECho

ECho

ECho
ECho

ECho

ECho

ECho

ECho
ECho

ECho +

PeterL. Romine 1990,91

University of Alabama, Humsville

Electrical and Computer Enginecrhag Department

CYRO-PC MENU

Directory of programs on PC disk
Directory of programs on CYRO
Reconnect PC to CYRO

List a NC program on the PC

Save a program FROM CYRO TO PC
Load a program TO CYRO FROM PC

G RUN program loaded on the CYRO

H HALT a program rtttming on CYRO

I Edit program on PC using MS WORD
J Edit program on PC using Q-EDIT

K Send program listing to printer

L Rescquene¢ program on PC

DEFAULT DIRECTORY [_CYRO]

Enter a letter from A to L

(or type Esc to quit)
j, "_-

:START

tick Enter a letter from A to L

echo.
GETLETR

IF ERRORLEVEL 27 GOTO END

IF ERRORLEVEL 13 GOTO START
IF ERRORLEVEL 12 GOTO LABELL

IF ERRORLEVEL 11 GOTO LABELK
IF ERRORLEVEL 10 GOTO LABELJ

IF ERRORLEVEL 9 GOTO LABELI

IF ERRORLEVEL $ GOTO LABELH

IF EILRORLEVEL 7 GOTO LABELG
IF ERRORLEVEL 6 GOTO LABELF

IF ERRORLEVEL 5 GOTO LABELE

IF ERRO_ 4 GOTO LABELD

IF ERRORLEVEL 3 GOTO LABELC
IF ERRORLEVEL 2 GOTO LABELB

:LABELA

dir/p *.ne

27

ticker
GOTOTOP
LABF2.B
dirp
ticker
GOTOTOP
:LABELC
init

ticker

GOTO TOP

:LABELD

listp
ticker

GOTO TOP

:LABELE

savep m
ticker

GOTO TOP

:LABELF

loadp m
ticker

GOTO TOP

:LABELG

rtmp m
ticker

GOTO TOP

:LABELI-I

h_tpm
ticker

GOTO TOP

:LABELI

echo Please Wait while WORD is loaded...
word

GOTO TOP

:LABEI_J

q
GOTO TOP

:LABELK

p_
GOTO TOP

:LABELL

reseqp
GOTO TOP

:END

RELEASE MENU >NUL

28

APPENDIX C

HEURIKON Software Listings

29

%

/* SEIRR_f.C module - This module acts as the SENsor CONtroller interface*/

/* for the T3V system. Throughout this module there are IFDEF complle */

/* switches checking for the switch SEPSC. if this switch is set it */

/* indicates the presence of a seperate sensor controller board as in */

/* Rocketdyne configuration. If this switch IS not set it indicates no */

/* seperate sensor controller board, as in the MSFC configuration. */

/* The routines included are: ./

/* se_la_It - initializes the sensor controller and/or communications */

/* si_dslta - sends deltas to the the sensor controller or robot */

/* se__8_ - gets all system paramaters from the sensor controllerS/

/* si__t_ - sets the time (if time kept in SENCON module} */

/* so _st - posts a message to the sensor controller _/

#include "/usr/system/codes.h"

#include "/usr/system/shared.h"

#include "util.h"

#include "system.h"

#include "global.h"

extern STATE state; /* current system states */

extern SYSTEM system: /* The current system parameters */

**

/* SE INIT - initializes the sensor controller system. If a seperate */

/* board is present it initializes com_u/_ications wlth it. If no

/* seperate board it starts up the clock and initializes the on board */

/* sensor controller system.

/* Queue ID for messages from sensor controller */

*/

se init {se_qid)

int seqid;

(

#ifdef SEPSC /* Initialize communication if seperate board

vt_msg ("Initializing Intercard Comm routines...\n", state.debugl);

initcom (se_qid);

#else /* Initialize communication if same board */

/* Init for MSFC */

init_serial(); /* Initialize the serial console port */

init_cyro(); /* Wait for the CYRo init msg */
#endif

}

/* SE DELl5% - sends a cross seam delta to the robot. Info is sent only */

/* if--the control switch is set and the sensor controller data read */

/* swltch is set. Two parameters are sent; delta and conf. Delta is */

/* the cross seam error passed as a velocity in units of .001"/sec. */

/* Conf is the calculated confidence in the delta (0 - i00). */

se delta (delta, conf)

int delta; /* The cross seam error, glven as a velocity */

int conf; /* The confidence in the delta */

{
/* Send info only if in control and Sensor controller data is readable */

if (state.control && state.scread)

{
#ifdef SEPSC /* if we have a sensor controller board... */

T3V FDBCK->delta = delta;

T3V--FDBCK->confidence - conf;

se_ost (T3VDELTA);

#else /* if we don't have a seperate board... */

/* For MSFC, send an override to the CYRO */

se post(delta);

#endif

]

}

./

,/

3O

/* SE aTSTSTJ_ - gets all system data from the sensor controller and */
/* st_res it into the struct SYSTEM. All data is moved at once to */

/_ maintain consistancy and to (in one place) be able to shut off reads */

/* to the sensor controller. Data is only read if the sensor controller_/

/+ read switch is set. */

system.pulsing

system.speed

system.peakcurr

system.backcurr

system.hours

system.mlnutes

system.secs
)

else

se_getsystem ()
(

#ifdef SEPSC /* If seperate board...

if (state.scread)

{ /* OK to read from Sensor controller

system.weldstate - ACTUAL->weldstate¢

= PROGRMED->pulseonoff;
= PROGRMED->travel;

= ACTUAL->p cur;
= ACTUAL->b cur;

= TIME->hours;

TIME->mins;

= TIME->secs;

{ /* not OK to read,

system.weldstate = WELDOFF;

system.pulsing = FALSE;

system, speed = 0;

system.peakcurr = 0;

system.backcurr = 0;

system.hours = O;

system.minutes = O:

system, secs = O;

}

system.pulslnq

system.speed

sys%em.peakcurr

system.backcurr
system.hours

system.minutes

system.secs
)

else

*/

*/

set values to default */

#else /* If no seperate board */
/* For MS_ CYRO */

if {!cyro locked)
{ /* OK to read from CYRO structure */

system.weldstate - cyro.weldstate;

= cyro.pulseonoff;

= cyro.travel;

cyro.p_cur:

= cyro.b cur;
= cyro.h_urs;

= cyro.mi_s;

= cyro.secs;

set values to default */{ /* not OK to read,

system.weldstate = WELDOFF;

system.pulsing = FALSE;

system, speed = 0;

system.peakcurr = O;

system.backcurr = 0;

system.hours - O;

system.mlnutes = O;

syste_.secs = 0;

}
#endif

}

/* SZ _ - posts a message to the sensor controller. If the sensor */

/* co_troller is a seperate board it sends the message via the intercard*/

/* communication system. The message is sent only if the sensor */
/* controller read switch is set. */

se_post (msq)

int msg; /* The message to post */

{

#ifdef SEPSC /* If seperate board */

if (state.scread) /* Send only if SC Read switch set.*/

post to sc (msg);

#else /* If no seperate board */

/* For MSFC, send override msg to CYRO */

cyro ovride(msg);
#endif

)

3!

