
N93- 12436

Unclas

G3/37 0127606

https://ntrs.nasa.gov/search.jsp?R=19930004248 2020-03-17T10:09:33+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42810504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i 1

w

w

w

RULRA Report Documentation Page

1. Report No.

4 Title ano Subtitle

Robot Welding Process Control

7, Authorlsl

Peter L, Romine

2. Government Accession No. 3. Recioient's Catalog NO,

5. Report Oate

Aug 1991

6, Performing Orgamzat_on Code

8. Performing Orgamzat=on Report No,

10. Work Unit No.

9. Pe#o_mg Organization Name and Addre_

University of Alabama in Huntsvilie
Electrical and Computer Engineering Department
Huntsville, Alabama 35899

12. Spon_nng Agency Name and Add_

National Aeronautics and Space Administration
Washington, D.C. 20546-0001
George C. Marshal Space Flight Center

11. Contract or Grant No.

NAS8-36955 DO #75

13. Type of Report and PenoO CovereO

Final Technical
25Febg0 - 25Feb91

14. Sponsoring Agency Code

15. Supplementary Notes

m

16. Abstract /

This final report documents the development and installation of software and
hardware for Robotic Welding Process Control. Primary emphasis is on serial

_communications between the CYRO 750 robotic welder, Heurikon minicomputer running
_Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and
!closed-loop welding control, The requfrements for completion of the implementation

iof the Rocketdyne weld tracking control are discussed. The procedure for downloading
iprograms from the Intergraph, over the network, is discussed. Conclusions are made
ion the results of this task, and recommendations are made for efficient implemen-
itation of communications, weld process control development, and advanced process

'control procedures using the Heurikon.

i
t

!
]

i

] 17. Key Words tSuggesteO Oy Author(s))
I

iRobotic Welding, serial communications,

LCYRO, HEURIKON, welding control

18. Ois:ribution Statement

; 19, Security CIassd. (of this report)

-Unclassified

NASA FORM 1628 OCT 86

20. Security Clas=f. (of this page)

Unclassified

21. No. of pages

72
I

22. Price

i

FINAL TECHNICAL REPORT

w

u

m

ROBOT WELDING PROCESS CONTROL

25 February 1990 to 25 February 1991

Contract Number NAS8-36955

Delivery Order 75

= =

Prepared for:

George C. Marshall Space Flight Center

Marshall Space Flightcenter, Alabama 35812

H
L_

u

22 July 1991

w

u

By

m

L !

INI

Peter L. Romine

Electrical and Computer Engineering Department

The University of Alabama in Huntsville

Huntsville, Alabama 35899

= .

u

= :
m

_ =

n

TABLE OF CONTENTS

1.0 Introd uction

I•I Introd uction.

1.2 Objectives

1.3 Approach

2.0 Communications Hardware

2•1
2.2
2.3

CYRO hardware

PC and Heurikon hardware

Fiber-optic serial interface

3.0 The PC Interface

3.1

3.2

3•3

Introd uction . . .

The CYRO TSR . • .

Overview of PC/CYRO Interface Functions .

4•0 The CYRO Executive

4.1 I ntrod uction

4.2 Software Changes

5•0 MSFC Facilities Used

5•1 SSME CYRO Workcell . • •
5.2 Facilities for CYRO executive tape

6.0 Conclusions and Recommendations for Future Development

6• 1 Conclusions
6.2 Heurikon development
6.3 TU58 development
6.4 The HOBART robot
6•5 Advanced Welding Process Control . • •

APPENDIX

A

B

C

D

CYRO-PC Installation and Operation Manual• •
Procedure For Generating CYRO Executive Tapes•
CYRO SePia] Interface Spec_Cication
Source listing of PC code . . •

. Paqe

. 3

• 3
• 5

6

• ?

• T
• 8

9

• 10

10
• 10

11

. 13

• 13
13

• 17

17
• 17

19

19
• 20
• 21
• 21
• 21

Pa_e

• 23
• 27
• 32
• 41

1.1 Introd uct-bn

1.0 INTRODUCTION

This report documents the new Weld Process Control interface hardware and

software for the CYRO 750. To appreciate the significance of these changes, it is

helpful to understand the work previously done to improve CYRO functionality,

the type of interface desired for the CYRO, and the computer inside the CYRO.

m

The basic CYRO is designed to do repetitive welding tasks without outside

intervention. The console and control pendant are normally the only ways for an

operator to interact with the robot. These are used to teach the robot how to

perform specific tasks. The SSME CYRO also includes an optional Sensor

interface. In theory, the sensor is an external computer or intelligent device

used for closed-loop control of the robot. The sensor can interface to the robot

via a serial or parallel interface.

=" ;

m

I

B

i SeT. I

To PC and Heurikon

MINC23

PDPll/23

DLVll

DRVll

Par .

AIM65

Replace all
Parallel comm.

with serial

Replace with PC Replace _Ith Heurikon

Figure 1. Old CYRO communications.

u

.J

m

IX
:4

rl

= =
m=mm

m

_ _

m

z_
W

H

., =

The parallel interface was previously implemented between the CYRO and a MINC-

23 microcomputer. The MINC wa._ ,.'sedas the host computer for storage and

maintenance of CYRO NC programs. Software was developed by Fred R. Sias to

support transferring programs between the CYRO and MINC. The MINC editor

could then be used to create and modify NO programs. It was also possible to

download programs developed on any other system, such as the Intergraph, to

the CYRO. The limitations in this configuration were due to the lack of

computing power and development tools in the M INC, and the parallel interface

did not allow other devices to readily communicate with the CYRO. Moreover,

the MINC system did not utilize interrupts and was not multits_king, therefore

the MINC could not be used to execute another task while the CYRO was running

a program.

The PDP-11/23 inside the CYRO 750 is utilized as a dedicated controller. This

computer contains only 128K words of memory, one TU58 tape drive, no floppy

drives, and no hard-disk. The program loaded via the tape drive must contain

all of the functions for initialization and basic control of the robot. In addition,

it must leave space for user programming and the optional sensor interface.

This does not leave room for an operating system, as we are accustomed to in

modern computers, or any significant diagnostic tools. As a result, software

development must be performed on a separate system, compatible with the PDP-

11/23 and capable of generating TU58 tapes with a RT-11 format.

To extend the functionality of the CYRO it is highly desirable to implement the

serial sensor interface. This will allow the CYRO to communicate with any modern

computer via a standard R5-232 interface. In particular, this will allow the

Heurikon to send positional updates to the CYRO, based on image processing

= =

= =

performed on the captured weld image, to implement closed-loop weld p_ocess

c_ntrol. In addition, this will i,_,iow a PC or other computer to serve as th_ host

for software storage and maintenance.

1.2 Objectives

z

r _

ao

b.

co

Investigate OSU software communications to send offsets to CYRO
robot from sensed vision data. Software written in Hunter & Ready
VRTX. Implement via serial approach, Heurikon serial I/O card to
CYRO robot's DEC PDP-11 computer.

Make recommendations on hardware and software required for

efficient implementation of communications and weld process control

software developments.

Implement software written by Rocketdyne in Canoga Park that
analyzes the weld image, provides offsets to weld path, requires
software to communicate with CYRO. Complete definition of software
requirements, write code to communicate with robot_

_ I

g

U

do

e.

Investigate the computer communications requirements for the welding

robot system presently under contract to Hobart Brothers Co. to be

installed in the welding laboratory late in FYgO. Determine proper

interface between Heurikon computer for vision process control as

well as welding process control.

Develop software to allow downloading of programs from Intergraph
to CYRO robot. These routines will run on Heurikon to communicate
with Intergraph for downloading files - interactive with CYRO when
the robot is not in motion.

B

D

M

f0 Investigate procedures an_drecommend approaches to allow the
Heurikon computer to more effectively support welding process
control. These include, but are not limited to:

Communications to new robot
Peaking/Mismatch
Automatic Robotic Torch Tooling (ARTT) gauging
GDI wire feed contract for SSME applications
Backpurge closed-loop control

w

1.3 Approach

M

= =

=

-'_4
--=--9

i

W

The element central to all of the objectives is serial communications with the

CYRO. The approach chosen is to perform this task first. Due to the wealth of

development tools available for the PC and the expertise available in program

development on the PC, it is expeditious to establish and validate serial

communications by developing software on the PC first. The new software will

replace the functions provided by the MINC system and also provide the services

that are discussed in the PRINZ windows program user manual. The software will

be written in C, for its suitability for hardware control and to facilitate the

portability of the finished software to the Heurikon.

Dave Gutow of Rocketdyne Canoga Park discussed the overall operation of his

seam tracking software and its communications requirements with the CYRO,

during his visit to MSFC. He identified the information his software expected

from the robot and the commands it sent to the robot. Since it is possible now

to modify what the robot sends, it was agreed that it will be ideal to modify the

CYRO to emulate the communications of the Canoga Park robot. This would

greatly simplify exchange of new software between MSFC and Canoga Park.

_=

m

m

2.1 CYRO hardware

2.0 COMHUNICATIONS HARDWARE

The CYRO initially contained a DLV'11E serial interface card. It was determined

to be defective. This was done using the ODT monitor in the CYRO and an

intelligent serial diagnostic box.

A replacement card was not readily available, instead a DLV-11J was removed

from the HINC-23. This card contains 4 serial ports, but could not be configured

to duplicate the DLV11-E settings. New I/O register locations and interrupt

vector locations were selected for serial port #I.

= :

=___

.4

u

Imm

Figure 2.

RCSR 167710
RBUF 167712
XCSR 167714
XBUF 167716

DLVEC 350

Octal register addresses and interrupt vector.

_I

m

m

m

Z

N

A new CYRO executive tape was required to accommodate the new register

locations and interrupt vectors for the DLV-11J. A new tape was created at

HSFC as described in appendix B. The ODT monitor was used again to verify the

operation of the new card.

Maintenance and troubleshooting was performed on the CYRO during November

1990. The troubleshooting was looking for noise problems that were disrupting

robot performance, especially while welding. The technician working on the CYRO

removed the serial and parallel cards (the option cards) from the card-cage and

changed the location of some of the other cards. Since the two c ntion _ards are

not required during default operation, he did not reinstall them.

Although the robot worked perfectly with the sensor disabled, it would work on]y

intermittently and then lock-up, with the sensor enabled. Since the new software

was working before the hardware changes, it was determined to be a hardware

problem. After extensive hardware and software debugging, the original

programmer for the sensor software, Russell Vires, emphasized the card location

was critical to the full operation of the CYRO. A document that outlined the

proper location of the I/0 cards was located, and after replacing the cards in the

proper positions, the software worked as before. The proper card placement is

shown in the figure below.

I=@

KDll-HD MSVll
DRMll (Data Bus) DRVll (To C_)
DRVll (kddr Bus) MXVII-_
2nd Option (DRVll) 1st Optio. (DLVll)

Figure 3. Proper CYROcard placement.

m

2.2 PC and Heurikon hardware

m

w

z

m

Imm

The PC and Heurikon required no additional hardware to communicate with the

CYRO. The PC communicates via serial port COMI: and the Heurikon can use any

of its available RS-232 terminal lines.

U

= .

w

2.3 Filx_r-optic serial interface

==

I

H

m

H
w

= =

L_

w

N

I

m

[]
J

Due to the harsh electrical environment to be expected in the vicinity of the

CYRO, especially during welding, it was decided to replace the existing shielded

wire link, between the CYRO and PC, with a fiber optic interface. The link

chosen connects between the two devices exactly as the original wire. The only

additional connection is for the standard wall-type external power supplies

required to power the interfaces.

Two I00 foot links were purchased. One was installed between the PC and CYRO;

this link will eventua]ly be used to connect the Heurikon to the CYRO. The other

link will be used to connect either the PC or the new robot to the Heurikon.

The new interface is illustrated in the figure below.

CYRO CONTROLLER

DLV-113

Fiber-optic cabIe

h
I I x Rs-232converter
i I I I

IBH PC/AT

Figure 4. Fiber-Optic Serial Interface

w

Introduction

3.0 THE PC INTERFACE

The initialversion of the PC-CYRO program was designed around a graphical user

interface. The functions it provides place it somewhere between the MINC and

Windows programs. In addition to being more complicated to write and maintain,

the software would not be direct|y portable to the Heurikon. For these reasons,

the one large program was separated and simplified into severs] stand-alone,

single-function programs. These programs could then be directly transferred to

the Heurikon.

=--

I

w

H

3.2 The CYRO TSR

The low-level hardware/software interface evolved through three phases. The

first phase of interface software did not utilize interrupts. This required the

program to constantly wait for messages from the CYRO. The second phase used

interrupts to receive messages from the CYRO. This freed the program to do

other things while the CYRO was running. However, the program could not be
+

exited to start another program because the CYRO periodioally transmitts status

information while it is running.

w

M

m

The final phase uses a Terminate and Stay Resident (TSR) program to

communicate with the CYRO. The TSR runs continuously, in the background, until

it is removed or the computer is reset. This allows any other program to execute

simultaneously. Of course the program must not use the same serial port as the

CYRO.

L

u

A novel feature of 5hu implementation used is the way in which the TSR "shares"

the serial line with the other interface programs. When the TSR is first

executed, it grabs and initializes the serial interrupt. It then goes to sleep

waiting to intercept messages from the CYRO. In this mode, the default character

input function, inside the TSR, acknowledges each character recieved from the

CYRO. It then provides the appropriate response to the CYRO once a complete

message has been received.

_ _

u

r_-_

mmm

When one of the interface functions desires to talk to the CYRO, they grab the

interrupt from the TSR when they start and return it to the TSR before they

terminate. The interface function also attaches a new character input function.

This function accumulates characters in a circular buffer and feeds them to the

main program as they are requested.

3.3 Overview of PC/CYRO Interfac_ Functions

= =

u

= =

M

u

The PC/CYRO interface functions support four basic operations:

Robot Initialization

Report/Change Robot Status

Program Exchange

Robot Position Control

Separate functions have been written for each of these, and are listed below.

The programs are envoked by typing the program name and any required

parameters, at the DOS prompt. Installation instructions and a more detailed

description of each function is included in appendix A.

w

INIT [no arguments] - Initializes tne PC and CYRO
communications. This program can be executed before the CYRO is
switched to sensor mode or any time after. If it is executed after
the CYRO is in sensor mode it will wait until the reset button is
pressed on the control pendant.

LOADP <Program #> <PC Fire> - Loads the NC program in the
PC to the CYRO in the specified program slot #.

u
RUNP <Program #> - Begins execution of the program previously
loaded into the specified program slot #.

HALTP <Program #> - Halts the program currently running from
the specified slot #.

SAVEP <Program #> <PC F_Ie> - Saves the NC program from the
specified program slot # in the CYRO to the specified file name in the
PC.

r_

g

w

m

LISTP <PC File> - Displays the NC program contained in the
specified file on the PC console,

EDTONC <PC Ed_ F_|e> <PC CYRO Fi|e> - Converts the NC program
file from the format necessary for editing to the format necessary for
the CYRO.

= _

w

_g

w

w

r_

I

i

=

Imm

4.0 The CYRO Executive

4.1 Introduction

m

w

i_±
w

The CYRO EXECUTIVE (EXEC) refers to the program that must be loaded into the

CYRO PDP-11/23 before the robot can be operated. The EXEC initializes the robot

software and hardware each time the robot is resei_ It also controls all of the

robots built-in functions, including the EXTERNAL SENSOR INTERFACE (SENSOR)

which is the method used to interface external computers to the CYRO.

The SENSOR was not fully implemented by the original manufacturer, as indicated

by their sensor interface specification. The original SENSOR does implement the

functions necessary to interface to the CYRO. As discussed in chapter I, the

parallel SENSOR connection has been used successfully. To this point, the serial

connection had not been used. The following sections discuss the software

modifications that were necessary for proper operation of the SERIAL SENSOR

INTERFACE.

=--

W

w

U

4.2 Software Changes

The software changes were limited to two MACRO-11 source files; EXTIVE.MAC and

SEN.MAC. Two new command files ASM.COM and LINK.COM were written for batch

creation of new tapes. The command files were modified for the RSX-11 operating

system. The ASM.COM file would typically only be run once. The L INK.COM file

must be run each time a new tape is made.

=--H
H
I

U

lie

H
U

STRTUP,STRTUP=SHWMAC/ML,STRTUP

ODTS,ODTS=SHWMAC/ML,ODTS

COMMON,COMMON-SHWMAC/ML,COMMON

TABLE,TABLE=SHWMAC/ML,TABLE

STACK,STACK=SHWMAC/ML,STACK

EXTIVE,EXTIVE=SHWMAC/ML,EXTIVE

SENSOR,SENSOR=SHWMAC/ML,SENSOR

GETCMD,GETCMD=SHWMAC/ML,GETCMD

MATHPK,MATHPK=SHWMAC/ML,MATHPK

PRGDCD,PRGDCD=SHWMAC/ML,PRGDCD

WMGPF,WMGPF=SHWMAC/ML,WMGPF

EXCUTE,EXCUTE=SHWMAC/ML,EXCUTE
DISP,DISP=SHNMAC/ML,DISP

CMC,CMC=SHNMAC/ML,CMC

DIAG,DIAG=SHNMAC/ML,DIAG

Figure 5. ASM.COM Assembly Batch File.

PETE3/-HD/-MM/SQ,PETE3/-SP/CR=STRTUP,ODTS,COMMON

TABLE ,STACK ,EXTIVE ,SEN ,GETCMD ,MATHPK

PRGDCD, WMGPF ,EXCUTE ,DISP ,CMC ,DIAG
/

STACK=O

PAR=PETE3:IO00:157000
//

Figure 6. LINK.COM link batch file.

w

m

w

m

l

_z

m

The initia|software change was due to the new register

required for the DLV11-J, as in chapter 2 anddiscussed

RCSR
RBUF =
XCSR =
XBUF =

XCSRO=
XBUFO =

XCSRI =

XBUFI =

XCSR2 -

XBUF2 =
DLVEC =

= 167710

167712
167714

167716

167704

167706

167714

167716

167724

167726

350

Figure 7. NewSENSORequates (SENSOR.M/W::)

and vector va]ues

shown below.

Z

U

Ill

m

_==!
N

L_

w

_ I

lira

N

E!

w

i

ilia

J.i

The CYRO still did not communicate serially after these changes. The problem

was isolated to the software after th_ hardware was proven _unctional using the

ODT.

The similarity between MOTOROLLA 68000 assembly language and MACRO-11

simplified analysis of the software. The software was downloaded to the PC and

a programming editor was used to trace the flow of communications in the

program. It was discovered that all of the software re]ating to the SENSOR was

contained in the file SENSOR.MAC (copied to SEN.MAC). A logical error was

discovered in the low-level serial interface functions. These functions were

rewritten and a new tape was generated. The first tape did not work due to a

memory overflow. The parallel I/0 functions were removed from SEN.MAC to free

sufficient program memory. A new tape was generated and was validated using a

communications program on the PC.

The EXTIVE.MAC file was only changed to update the CYRO initialization message,

show below. This message will appear on the CYRO console each time the CYRO is

rebooted from the CYRO-SERIAL executive tape.

SSME Robotic gelding Project
Marshall Space Flight Center
UAH Tape Version 2.3
Generated by Peter L. Romine on Feb. 6, 1991
DLV 11-3 4-Channel Serial Card
Communications Via Chan. 1, BAUD set on card.

Figure 8. CYRO Initialization message.

MSGFLG:
MSGI:

.BYTE

.BYTE

.ASCII

.BYTE

.ASCII

.BYTE

.ASCII

.BYTE

.ASCII

.BYTE

.ASCII

.BYTE

.ASCII

.BYTE

0

15,12

/SSME ROBOTIC WELDING PROJECT/

15,12
/MARSHALL SPACE FLIGHT CENTER - /

15,12

/UAH Tape Version 2.3/
15,12

/Generated by Peter L. Romine on Feb. 6, 1991/

15,12

/DLVI1-J 4-CHANNEL SERIAL CARD/

15,12

/Communications Via Chan.1, BAUD set on card./

15,12

Figure 9. Modification to EXTIVE.MAC

U

i

[]

| t
L _

il

U
=d
U

H

H

More substantial changes were made to SEN.MAC, as discussed earlier. The low-

]eve] I/0 functions are DRIN and DROUT, shown below. The parallel I/0 support

was removed from each to simp]ify the functions and free program memory.

; ROUTINE:DRIN

; FUNCTION:READ A BYTE FROM A SERIALPORT

; OUTPUT:RO = BYTE READ FROM PORT

DRIN: BIT #RCVDNE,_#RCSR ;CHARREADY?

BNE ORIN ;-)NO

MOV B#RBUF,RO ;READBYTE

BIC #LBYTMS,RO
RTS PC

; ROUTINE:DROUT

; FUNCTION:OUTPUTA BYTE TO A SERIALPORT

; INPUT:RO = BYTE TO OUTPUT TO PORT

OROUT: BIT #XMTRDY,Q#XCSR ;CANI XMIT CHAR?

BEQ DROUT ;-)NO

MOV RO,Q#XBUF ;OUTPUTCHAR
RTS PC

__- =-

5.0 MSFC FACILITIES USED

5.1 SSHE CYRO Workcell

= :

The primary facility used is the SSME CYRO workcell located in building 4705.

This area contains the CYRO 750 robot, PDP-11/23 based controller, welding

apparatus, an IBM PC/AT running MSDOS 3.30, and a Heurikon minicomputer

running UNIX and VRTX. The PC serves as an a]ternative software development

system and is used to demonstrate the operation of the new software. After

initial development is complete, these functions will be shifted to the Heurikon.

5.2 Facllibies for CYRO executive

H

u

M

__-:_

U

H
U

ui

=__=_-

B

m_

m

As discussed in the first chapter, a separate computer is required to create new

CYRO executive tapes. The complication is that this computer must contain a

MACRO-11 assembler or cross-assembler and be able to either generate RT-11

program images or VAX EXE files. The computer must also have a TU58 tape

drive.

Ten years ago this would have been a typical computer system. Today it is

becoming more difficult to find a system that supports any of these. The latest

revisions, documented in the following section, requires the use of two separate

computers in two different buildings. To make things worse, the output from the

first system must be physically transferred to the second on magnetic tape.

m

E

-Z-:

m

= :

w

==

L=

R

N

The two systems used are the PDP-11 running RSX-11M in building 4T0_l and the

VAX running VMS in the back ,;f 4705. The RSX system contains the source files,

the MACRO-11 assembler, and the linker. Software changes can be made on a

terminal at 4708 or remotely via the NASA network. The new files are then

assembled and linked into an executable or image file.

The new executable file is then loaded on magnetic tape for transfer to the VAX

in 4705. Once on the VAX, the RT11UTL is used to convert the RSX file to RT-11

format. The EXCHANGE utility is used to copy the file to the TU58 tape. Finally,

the ZAPCSA1 or ZAPTU58 utility is used to mark the new tape as a CYRO

Executive tape.

==

=m_

I

m

6.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE DEVELOPHENT

6.1 Conclu sions

Serial commun___tions between the CYRO and PC is fully implemented and tested.

The foundation for serial communications from the CYRO and PC to the Heurikon

is established. The software interface for this communication is designed to

facilitate operation of the OSU software, weld process control, Rocketdyne

software, or other software developed on the Heurikon or PC. The Heurikon

includes sufficient 1/0 capabilities to support several simultaneous

comm u nicatio n s.

!

mira

m

N

m

Communication from I ntargraph to CYRO is now possible. Files are transferred

from I ntargraph to the PC or Heurikon over the network, and then to the CYRO.

Experimentation with different BAUD rates on the PC and Heurikon has resulted

in a rough indication of processing margin. Additional analysis will be required

to better quantify processor utilization.

Familiarization was obtained for the requirements for peaking/mismatch, ARTT

gauging, wire feed, backpurge closed-loop control, and other advanced weld

process control methods. From this cursory investigation, it is feasible to run

these processes on the existing equipment.

m

M

H

IMB

6.2 Heurikon development

u

u

1
N

= =

H

= =

The NC programming support software now running on the PC is written in ANSI

standard C to facilitate its portsbility to the Heurikon. I propose we port this

software over to the Heurikon, running on one of its spare serial lines. This will

be a good first step in CYRO-Heurikon integration.

The NC programming software developed for the PC supports transfer of

programs between the PC and CYRO. With this setup, files are transferred over

the network from the Intergraph to the PC and then transferred to the CYRO.

Porting the PC software to the Heurikon allows the Heurikon to duplicate this

function. It may prove desirable to obtain an additional modem to connect the

Heurikon directly to the network rather than using the one now connected to the

PC.

After my discussion with Dave Gutow of Rocketdyne, I propose we make small

modifications to the CYRO executive tape to make the CYRO emulate the

communications protocol of the Rocketdyne robot- This will provide greater

compatibility between the two versions of the weld tracking software. I now

have sufficient experience with the process of making CYRO executive tapes to do

this.

=,_
m

_ _

= _

m

E_H

H
m

i

6.3 TU58 development

In an attempt to simplify the currently tedious software development cycle for

the CYRO, I propose we make a brief attempt at emulating the CYRO's TU58

tape drive with the PC. I now have a portion of the software necessary for this

and I believe I could quickly determine the feasibility of this.

6.4 The HOBART robot

m

m

z

=-=

m

z

M

w

At a minimum, the Hobart system will require at least one free serial line to be

able to communicate within the present system . We must first define the role of

the Hobart system as to the type and amount of information that it will need to

share between the other devices, robots, computers, etc. The actual

communications requirements will then be determined from this evaluation. In

addition, due to the harsh electrical environment presented by the robots and

the welding process, I propose that all important communications between the

CYRO, Heurikon, PC's , Hobart, and any other computer equipment be made with

fiber optics.

6.5 Advanced Welding Process Conbrol

Once reliable communications is established between the CYRO, PC, Heurikon,

Intergraph, etc. I anticipate the advanced welding process control work will

begin. From my previous experimentation, the PC/AT can support full speed

communications with the CYRO while running other, CPU intensive, processes. I

expect the same to apply for the Heurikon. Still to be determined though is the

ability of the Heurikon to simultaneously support advanced weld process control

m

m

in addition to weld tracking. From a controls standpoint, it is essential that the

control loop calcu1&tion time be sufficiently sma;_ _o maintain stability. I propose

to determine the maximum loop time a11owable by adding processes to the CPU

until stability is degraded. This will quantify the amount of additional

processing power available for Peaking/Mismatch, ARTT, Wire Feed, Backpurge

Closed-loop Control, and other control methods.

H

n

E

i

m_

Ill

m

[]

m

=

u

APPENDIX A

A. 1 I nst_l]aLion

CYRO-PC INSTALLATION AND OPERATION MANUAL

The disk space requirements of CYRO-PC are small enough that it can be used

directly from a floppy disk, or installed on a hard disk for faster operation. For

the program to operate your machine must have the standard DOS 3.3 (or

greater) files, 1 sepia] communications port designated COHI:, and 512K or more

RAM. There are no special display requirements.

m

m

m

w

m

For hard disk installation, create a subdirectory to store the files in. For

example, if your hard disk is C: and the program flies are in drive A:, then at

the C: prompt you would enter,

CD\
MKDIR CYRO
CD CYRO
COPY A:*.*

Enter the DIR command and you should see the following files.

CYROI N I T.BAT
CYROTSR.COH
EDTONC.EXE
HALTP.EXE
I NIT.EXE
L I STP.EXE
LOADP.EXE
RUNP.EXE
SAVEP.EXE

The CYRO-PC programs need the DOS program MODE.EXE to initialize the serial

port. Check to see if your system knows where this file is by typing MODE then

pressing Enter. If you get a "BAD COMMAND" message, you must locate the MODE

program and copy it to the CYRO subdirectory.

A.2 Ooer'at'ion

The initializationCYROINIT command file must be run before using any of the

other programs, each time the PC is turned on or rebooted. This file contains

the following commands.

MODE COM 1:9600,N,8,1,P
CYROTSR
INIT

You should see a message saying the PC is waiting for the CYRO init message. If

the CYRO is booted, press the RESET button on the pendant_ Otherwise, power-

up and boot the CYRO with the CYRO-PC executive tape. Be sure the key switch

on the CYRO is turned to SERIAL mode.

u

BE=_

W

If the PC does not return with a prompt, reset the CYRO several times. If this

fails,press the Q key on the PC, this should exit from the INIT program; if it

does not, reboot the PC and start over. If you get back to the prompt, enter

INIT, then reset the CYRO; if this does not work, reboot the PC and start over.

= =
n

=.==.

H

U

u

Once communications have been initialized you can use any of the other programs

to transfer files between the CYRO and PC; RUN or HALT a program loaded in the

CYRO; or LIST and EDIT CYRO programs on the PC. Detailed instructions for

each of these follows.

U

i

==

J

A.2.1 Transfer To/From CYRO

n

U

w

D

H
W

w

m

H

mq

[]

m

_==

i

U

The SAVEP and LOADP programs are used to transfer files between the CYRO and

PC. The SAVEP program copies a program from the CYRO and saves it in a file

on the PC.

SAVEP <Program #> <PC File> - Saves the NC program from the
specified program slot # in the CYRO to the specified file name in the
PC.

To save the CYRO program in slot 1 to the PC file MARY.NC you would enter

SAVEP 1 MARY.NC

The LOADP program copies a program from the pC and loads it into the CYRO.

LOADP <Program #> <PC File> - Loads the NC program in the
PC to the CYRO in the specified program slot #.

To load the program in file MARY.NC into slot 1 on the CYRO you would enter

LOADP 1 MARY.NC

The programs RUNP and HALTP are used to start and stop programs loaded in

the CYRO,

RUNP <Program #> - Begins execution of the program previously
loaded into the specified program slot #.

HALTP <Program #> - Halts the program currently running from
the specified slot #.

The program L ISTP is used to list CYRO programs on the PC screen, printer, or

file.

LISTP <PC F_le> - Displays the NC program contained in the
specified file on the PC console.

The program EDTONC is used to convert a CYRO file that has been edited on the

PC into the format required by the CYRO.

EDTONC <PC Edge FYle> <PC CYRO File> - Converts the NC program
file from the format necessary for editing to the format necessary for
the CYRO.

LJ

m

The following file is an example of a tYRO NC program that could be entered into

a PC file using any ASCII editor. You must use an editor that des not insert

additional format information into the file.

NO2GigFS/

NO4G91XAlO/

M2/

U

Figure 10. Example CYRO NC program.

H_4

U

E_

[]

U

U

E_
m_

W

_=

m

m

U

m

APPENDIX B PROCEDURES FOR GENERATING EXECUTIVE TAPES

r=

w

U
|]

I

= =

=--

The following section details two methods for creating CYRO Executive tapes. The

first method assumes you are initiallyoperating over the network. The second

assumes you are physically located in the 4708 computer room.

Two systems are used to generate the executive tapes. The systems are the

PDP-11 running RSX-11M in building 4708 and the VAX running VMS in the back

of 4705. The RSX system contains the source files, the MACRO-11 assembler, and

the linker. Software changes can be made on a terminal at 4708 or remotely via

the NASA network. The new files are then assembled and linked into an

executable or image file.

The new executable file is then loaded on magnetic tape for transfer to the VAX

in 4705. Once on the VAX, the RTIIUTL is used to convert the RSX file to RT-11

format. The EXCHANGE utility is used to copy the file to the TU58 tape. Finally,

the ZAPCSAI or ZAPTU58 utility is used to mark the new tape as a CYRO

Executive tape.

U

m

W

I

_3

= =

EEl

__I

HETHOD i WORKING OVER THE NETWORK

L_

|_
LJ

U

H

W

= =

F_

L_

D

TRW

@LOCAL> C ISVX01

USERNAME:

PASSWORD

SET HOST SCAT (Bldg 4708 Room 1107A, Gene Dennis and Jon Scheidt)

>HELLO (Required to start a |ogin)

Account or name: (Enter your account name)

PASSWORD: (Enter your password)

(Use ED to edit files or upload files over the network)

>RUN $MAC (To run the RSX-11 assembler)

RTO>FILE,FILE=SHWHAC/ML,FILE (Wait for prompt to return)

RT0>^Z (To exit the assembler)

>RUN $TKB

TKB>OLINK.COM

>LO (To]ogoff SCAT)

LO (To 1ogoff the VAX)

You must now go to Bldg 4708 to copy the new file to mag tape.ii
>HELLO

Account or name:

PASSWORD:

>MOUNT HSO:SSHE

>COPY FILE.TSK HSO:FILE.EXE

>DISMOUNT MSO:

>LO

m

m

L_
W

m

_O

IIYou must now go to 81dg 4705 room C-200 to generate the CYRO's TU58 tape

= =

LJ

|_

W

M

H

m

....=

N

H
m

USERNAHE:

PASSWORD

SET DEFAULT DUAO:[DEASON.SSME]

HOUNT/OVER=OWNER_I D HSAO:

SSHE

<CR>

COPY HSA0:FILE.EXE STA.EXE

RUN RTllUTL

STA.EXE

DEL FILE.EXE

DISHOUNT HSAO:

RUN SYS$SYSTEH:SYSQEN

SYSGEN> CON CON

EXIT

EXCHANGE

EXCHANGE> INIT CSAI:

COPY STA.SAV CSAI:

EXIT

RUN ZAPCSA1

DEL STA.SAV

LO

H
m

JI
YOU NOW HAVE A NEW CYRO EXECUTIVE TAPE

,.)Q

METHOD !1 WORKING FROM BUILDING 470B

You s_d:ing at a termina| in BIdg _708 Roo,_ 1107A.$hou_j be
,- _ m| . _

>HELLO <CR> (Required to start a]ogin)

Account oP name: (EnteP your account name)

PASSWORD (Enter your password)

(Use ED to ed_c files or upload files over the network)

>RUN SHAC (To run the RSX-11 assembler)

HAC>FILE,FILE=SHWHAC/HL,FILE (Wa_c for prompt to return)

HAC>^Z (To ex_c the assembler)

>RUN $TKB

TKB>@LINK.COH

HOUNT HSO:SSHE

COPY FILE.TSK HS0:FILE.EXE

DISHOUNT HS0:

LO

Jf
I

m

L_

= =

IFJ
g_

E ;i

IMI
lid

B

II'..... li(You must now go to Bldg 4705 room C-200 to generate the CYRO's TU58 tape)

m

H

w

W

t_

r=_

w

m

m

Imm

USERNAHE:

PASSWORD

SET DEF DUAO:[DEASON.SSHE]

HOUNT/OVER=OWNER_ID HSAO:

SSHE

<CR)

COPY HSAO:FILE.EXE STA.EXE

RUN RT11UTL

STA.EXE

m

w

=,=m

N

W

L_-J
H

w

w

DEL FILEoEXE

DISHOUNT HSAO:

RUN SYS$SYSTEH:SYSGEN

$YSGEN> CON CON

EXIT

EXCHANGE

EXCHANGE> INIT CSAI:

COPY STA.SAV CSAI:

EXIT

RUN ZAPCSA1

DEL STA.SAV

LO

=..,=

m

m

N

D
w

L_

qlme

t

APPENDIX C

C.1 INTRODUCTION

CYRO SERIAL INTERFACE SPECIFICATION

z :

w

l

U

u
BIBB

E_

m

==
m

u

This section details the actual functions supported by the new software. The

functions added have been clearly identified. This chapter replaces the

Advanced Robotics Corporation, External Device Interface manual (dated Apri] 27,

1984).

The external device interface option provides the capability for other intelligent

devices to communicate with Advanced Robotics Corporation's CYRO 750 and CYRO

2000 arc we]ding robot contro]lers. The interface consists of a software package

for the 11/23 based robot controller that is designed to suppoPt one

communication channel using a DEC DLV-11 CSerial) board. No_ The interface

originally supported both serisl and parallel interfaces. The parallel intarface

option was removed to free memory resources for other applications.

The software for the robot controller supports two classes of external device:

SENSOR and/or COHPUTER. Each device class has a predefined set of a11owable

commands to perform the following communication functions:

w

u

IBm

p: q
J

u

u

ROBOT/ALL DEVICE INTERACTIONS

Device I dentification/Ststus

Program Status

We]ding Status

Robot Positions

Message to/from Device

Error Hessages

m

w

_ +

_m

=

Robot System Parameters

Device Mode Command

ROBOT/SENSOR Ii_TERACT ION

Sensor Setup Parameters

Sensor Tab]e

Sensor Position Definition

Sensor D_gnostic

Sensor Calibration

Search for Seam

Sensor Override Data

ROBOT/COMPUTER I NTERACTIONS

Save Program to Computer

Load Program from Computer

SERIAL INTERFACE HARDWARE

Dtgital Equipment Corporation DLV11-J 4 Channel Serial Line Unit

Full Duplex without echo from receiver

Device Address Selection

First SePia] Device = 175620

Second Serial Device = 175630

Device Interrupt Vector

First serial device = 370

Second serial device = 380

[]
m

33

m

!

w

- .+

U

U

==

m

PIN#

1

2

3

4

5

7

8

20

22

Table i S_IAL I_

SIGNAL

Protective ground

Transmitted Data

Received Data

Request to Send
Clear to Send

Signal Ground
Carrier Detect

Data Terminal Ready

Ring Indicator

SERIAL INTERFACE HANDSHAKING PROTOCOL

==
u

F_
w

H
_4
H
m

i

N

_ +
m

mmm

r_

r_
==
m

mm

m

W

The handshaking on the CYRO side is performed in hardware. The receiver

should be able to read each character via an interrupt or polling.

MESSAGE PROTOCOL

The message protocol describes the format that the actual data is transmitted in.

The message format is as follows:

Length = a byte of information is transmitted by the sender
indicating the tength of the type code and data portion of the
message. The length of a message can range from 1 to 254 bytes.

Sequence Number = a by_ identifying each message. This number-
will be used to reference a 3articular message, for example, an error
message may reference this number to indicate which message caused
an error.

i

Type Code = a byte indicating the type of message that is being
transmitted. This information is used to define the format of the
data fo|_owing, and is application dependent.

34

h_

1

l

W

U

U

E_
I

1

u

1

1

1

l

l

[]
1

U

N
W

Qm

!

Data = 0 to 253 bytes of information that are application dependent-

The number of data bytes plus the type code defines the length of

.he messa.

Longitudinal Redundancy Check (LRC) = a byte transmitted by the
sender to be used by the receiver for error detection. The LRC is
computed by exclusive or-ing the length with xff then using the
result to exclusive or with the sequence number, then using the
result to exclusive or with the type code, then using the result to
exclusive or" with each byte of data.

The message will be complete when a byte is transmitted by the receiver to

acknowledge the correct or incorrect; receipt of a message from the sender. Jf

the LRC computed by the receiver matches the LRC sent by the sender, then the

message was received correct]y.

Response is:
LRC correct = 1
LRC not correct; 2

MESSAQE TYPES

There are six message types supported by the external device interface.

Distances and ang]e measurements are referred to in many of the messages in

these different message types. For consistency, the following scale factors will

be used when referring to distance and angles:

Distances: 1/64 inch per b_c

Angles: 1/10 degree per b_c

Messaaes from the Robot. to _11 DeV'iC_

Request Device I dentiflcation/Status

Program StabJS Mode

Welding Status Mode

Robot; Positions

Special Message to Device

Error

35

u

w

Robot System Parameters

Device Modes

Massacres from the Robot to Sensor Devic_m

33

34

35

36

37

Sensor Setup Parameters

Sensor Table

Sensor Position Definition

Sensor Diagnostic

Sensor Calibration

_4

|]
i,4

:...

m

[]

i

E_
|1

it.,.,.1

Massacres from the Robal; to Cqlpuulz¢ DevicnA

65

66

67

Load Program from Computer Acknowledge

Save Program to Computer Acknow]edge

Save Program to ComDuter

Messaaes from all Devices to the Robot

129 Device I dentification/Status

130 Set Program Mode

131 Set Welding Mode

132 Request Robot Positions

133 Special Message from Device

134 Error

138 Request Robot System Parameters

M__ from Se_n_ _'_ to _

161 Override Data

162 In Position Command

!

Messaaes from Comoutar Devices to the Robot:

193

194

195

Request Save Program I_ Computer

Request Load Program from Computer

Load Program from Computer

E
L_

U

U

l.d

m

U

E_

i

_J
[]
W

MESSAGE CONTENTS - ROBOT TO ALL DEVICES

Request Device ldentiftcCi_/Status is a message sent at reset time
requesting the dev_e identification and hardware status of the
device. The result of the request will be a Device
Identification/Status message from the device, ind_ating existence,
software and hardware version numbers, and the status of the
hardware that can be determined by the device.

2 Program Status Node - ind_.etes to the device that the specified
N/C program has been started or stopped.

Type Code = 2
Status (one byte):

Program Started = 1
Program Stopped = 2

Program Number (one byte - 1 to 9)

3 Welding Status Mode - ind_.ates to the device that welding has
been started or stopped by the N/C program.

Type Code = 3
Status (one byte):

We]ding Started = 1
Welding Stopped = 2

4 Robot P_ - ind_stes to the device what the current robot
posfcions are.

_7

=

l

m

=--
u

+

_-" !

!

l

=

1

5

6

Type Code = &
X axis position
byte)
Y axis position
byte)
Z axis position
byte)
A axis position
byte)
C ax_s position
byte)
X axls position
Y axis position
X axis position
Y axis position

- inches (two bytes, low byte, then high

- inch== (two bytes, low byte, then high

- inches (two bytes, low byte, then high

- degrees (two bytes, low byte, then high

- degrees (two bytes, low byte, then high

- C positioner - degrees (two bytes)
- C positioner - degrees (two bytes)
- D positioner - degrees (two bytes)
- D positioner - degrees (two bytes)

Special Message to Device - is a message that will pass ASCII data
that is placed in a corresponding N/C command to the device. This
message is envisioned to allow special features of some devices to be
enabled without the need to change the robot software. It may also
be used to send information messages from the N/C program to the
device. There is a corresponding message from the device to the
robot that will display on the operator's terminal.

Type Code = 5
Variable number of ASCII bytes to be interpreted by the device
for special function operation.

Error - is a message indicating that an error has occurred in the

robot control, and what that error is. The device will be required to
make a decision based on the error as to the proper course of action
to take.

Type Code = 6
Error number - to be defined as needed

Robot Sysl_m Panmetmrs - is a message indicating that a robot
system parameter has changed. Some of the system parameters will
be torch feedrate, welding level, wirefeed speed, and left and right
oscillations.

Type Code = 7
Torch Feedrate - inches per minute (two byte, low byte, then
high)
Wirefeed Feedrate - percent of power supply output (two

bytes)
1 bit = 0.1 percent

AVC/ACC setpoint Level - weld]eve] setpoint as defined in the
N/C program for Automatic Voltage Control and Automatic
Current Control (two bytes)

1 bit = 0.1 percent

_R

Oscillation - indicates that a le_c or right oscillation has
occurred (one byte):

None --' 0
Lethe Osc. = 1
Right: OSCo= 2

= =

h.d

8 Dev_e Modes - is a message telling the device whether the message
being received by the robot will be executed or not. For example,
this will tell a sensor when it should start sending override data, or
a host: computer that a safety switch has been released, and that; it
has control of the robot.

Type Code = 8
Device Type (one byte):

Sensor Device = 1
Computer Device = 2

Device Identification - three characters as defined in the
Device I dentificat_on/Status Message.
Device Status (one byte):

Device On = 1
Dev_.e Off = 2

m

m

MESSAGE CONTENTS

33

34

35

36

37

ROBOT TO SENSOR

Sensor Setup Parameters

Sensor Table

Sensor Position Definition

SensoP D_gnost;ic

Sensor Calibration

DEVICE-¢

m

imm

m

=-:

m

Messa(um from the Robol: t_ ComDurb_ Dev_m_

65

66

67

Load Program from Computer Acknowledge

Save Program to Computer Acknowledge

Save Program to Computer

=.=

m

m

1

l

m

w
1

E=

taB=

Me.s.saaes 'From ail Devices to the Robot

130

131

132

133

138

Device I dentificat_on/Statu s

Se¢ Program Mode

Set Welding Mode

Request Robot Positions

Special Message from Device

Error

Request Robot Sys_m Parame_s

Messlaes firom Sensor Dev_ ba the Robo¢

161 Override Data

162 I n Posfc_on Command

Messaoes from Como_ Dev_ to t=ha RoboE

193

194

195

Request Save Program :_ Compu_r

Request Load Program from _mpu_

Load Program from _mpu_

1

1

m

4O

\

r

u

mma

m

=-

u

APPENDIX D SOURCE LISTING OF PC CODE

m

[]
m

,am

m

I

u

1me

m

uw

u

m--

--=
W

m_

IR

;.G

m

m_

=_

N

Ii

m

w

B

im
m

m

/, CYRO.H --- ComJnications Program For The CYR07SOROBOT,/

/* Writtenby

,/

Pete_ L. Romine 1990

Universityof Alabama,Huntsville

Electricaland ComputerEngineeringDepartment

Copyright 1991 Peter L. Romine. All rights reserved.

#define UART_PTR
#define COMH1
#define COMM2

Ox400

OxO0

Ox01

#define XMIT

#define RCV

#define $IO_STATUS
#define RCV_MASK

#define XMIT_MASK

OxO0

OxO0

Ox05

Ox01

Ox20

#define DTR_HASK 1
#define RTS_MASK 2
#define CONTROL_2324

#define MAX_INTR 10
#define BAO_ITYPE OxlO0

typedef long IVEC_PTR;

#define INTR_ENABLE1
#define ENABLE_RCV1
#define ENASLE_XMIT2
#define ENA_.E_ERR4
#define ENABLE_2328

#define SIOINIT_OK 'U'
#define INTON_HASK8

struct serial
(

unsigned uart_base;
unsigned comport;
unsigned inton;

);

typedef unsigned char UCHAR;

struct cyro_msg
(

UCHAR

UCHAR

UCHAR

UCHAR

UCHAR

len;
seq;
tc;
data [255] ;
lrc;

);

w

i

m

w

i

m !_

I

BMI

I

-'-=2

N

Z
m

N

==

H
m

N

===

u

==

m

typedef structcyro__g CYRO;

struct

(
chartype[16];

charid[3];

charstatus[16];
)device;

struct

(

}arm;

struct

(

)cpos;
struct
(

float x;

float y;

float z;

float a;

float c;

float

float

float

float

}dpos;

float torch;

float wire;

float weld;

X;

Y;

x;
y;

/* Device type l=sensor, 2=computer=/
/* Device ID =/

/, Device Status l=on, 2=off =/

/= Torch feed rate =/
/= Wire feed rate =/
/= Weld level =/

float avcacc; /= avc/acc setpoint ,/
/, O=no osc, 1=left osc, 2=right osc ,/OSC;

char program[16] ;
char welding[t6] ;

};

UCHAR number; /* NCprogram number=/
UCHARsizeJ,size_h; /, Program size in bytes (low,high) */
char name[16]; /= Program file name =/
char comment[80];/= Commentto store in file =/

UCHAR
struct

(

)stat;
struct

(

}prow;

#inclu_ 'c_oproto.h'

_ =

m

=

m_

i

mm

m

M

mm

ml

m

=_

Ill

/= CYROPROTO.H--- CommunicationsProgram For The CYR0750ROBOT*/

/, gritten by

_x

,/

Peter L. Rom_qe 1990
University of Alabama, Hunts,,_lle
Electrical and Computer Engineering Department
Copyright 1991 Peter L. Romine. All rights reserved.

/= Declared in CYRO.C*/
extern int main(int argc,char **argv);
extern void robot_status(void);
extern void ncprogramming(void);
extern void pc_utilities(void);

extern voidcontroljobot(void);

/* Declared in COMM.ASM,/
extern void init_cou(void);
extern void uninit_comm(void);
extern void set xoff(int flag);
extern int get_xoff(void);
exter n i nt rcvd xoff(void);
extern £nt sent_xoff(void);
extern int inp cnt(void);
extern UCHARinp_char(void);
extern void inp_flush(void);
extern

// ;initializethe con_ port,

// ;removeinitialization,
// ;enable/disableXON/X_F,

// ;readXON/XOFFstate,

// ;returnstrue if XOFF rcvd,

// ;true if XOFFsent,
// ;returns count of rcv chars,

// ;get one char from buffer,
// ;flush input buffer,

void outp_char(UCHARc); // ;output a character,

/= Declared in 5ERIAL.C ,/
externstTuct serial sio;
extern
extern

extern

extern

extern

extern

extern

extern
extern
extern
extern
extern
extern

void outport(unsignedport,UCHARc);

UCH_ imort(unsignedport);

unsigned peek(unsigned segmnt,unsigned offst);
void s xmit(_hL_hRc);
UCHARsJcv(void);
UCHAR s_rcvstat(void);

UCHAR s_xmstat(void);

UCHAR s_getch(void);
void sj=utch(UCl_ c);
UCHARs_inchar();
UCHARgetjs232(void);
void rs232_on(UCH_ rs232jask);
void rs232_off(UCHAR rs232_mask);

void term(void);

/= Declared in MENU.C,/

/= Declared in CYROI.C ,/
extern void computeJrc(CYRO =msg);
extern UCHARsendjsg(CYRO =msg);
extern UCHARget__g(CYRO =msg);
extern float to_inchee(UCHAR low, UCHARhigh);
extern f|oat to_degrees(UCHAR low, UCHARhigh);

_L4

u

m

w

E_

L_

i

H
m

[]
u

i

w

w

m

u
H

U

N
F-
ro

/* Declared
extern void
extern void

/* Declared
extern void

/* DecLared
extern void

in CYR02.C=/
cyro_init(CYRO ,msg);
send_devils ;..;(CYR0,msg);

in CYR03.C=/

cyro_position(CYRO *msg);

in CYR04.C=/
cyro_parneters(CYRO =msg);

/* Declared in CYRO5.C */
externint Update_0K;
externstructrobot robo;

externvoid taik_to_cyro(void);

externvoid updatejobo(CYRO*msg);

externvoid update_statu_void);

/* Declared in CYR06.C,/

extern void cyroJun_prog(CYRO =msg);

/* Declared in CYR07.C*/
extern void cyrosave.prog(CYRO =msg);

/= Declared in CYRO8.C,/
extern void cyro_load_prog(CYRO,msg);

/* DecLared in CYR09.C:/
externvoid cyro_stop_prog(CYRO=_sg);

/, Declared in CYR010.C=/

extern void cyro_jog(CYRO,msg);

/= Declared
extern void

externvoid

in CYR011.C=/
sorry(void);

cyro_message_tojobot(CYRO,msg);

/* DecLared in CYR012.C=/

extern void cyro_list_prog(CYR0 *msg);

/, Declared
extern void
extern void
extern void

in CYR013.C=/
sorry(void);
status(char *®sg);
cyro_tiae(void);

H

m

w

z__-

L±

--_z_

N

w

= =

u

_q

w

/* SERIAL.C --- CommunicationsProgramFor The CYR0750ROBOT ,/

/* Writtenby
_z

,/

Peter L. Romine 1990

University of Alabama, Huntsville

Electrical and Computer Engineering Department

Copyright 1991 Peter L. Romine. All rights reserved.

#include(stdio.h)

#include 'cyro.h'

#include'graph.h'

struct serial sio={O,O,O);

#pragma check_stack(off)

void outport(unsignedport,UCHARc)

(
_asm

{
mov dx,[port]

moval,[c]
out dx,al

)
)

UCHAR inpott(unsignedport)

(
_asm

(
mov dx,[port]
in al,dx

xor ah,ah

)

unsignedpeek(unsigned segmnt,unsigned offst)
(

..asm
(

movax,[se_nt]
mov es ,ax
mov si, [offst]
mov ax,ES: [si]

)

void s_xmit(UCHhRc)
(

outport(sio.uart_base+XMIT,c);
)

46

w

m_

m

mmm

=

u

w

z

T

m

mmmm

m

m

m

i

UCHAR s rcv(void)

(
retu_'r_(sio.inton ? inr.char(): inport(sio.uart_base+RCV));

)

UCHARs rcvstat(void)

(
return (sio.int_on ? inp cnt() : ((UCHAR)(inport(sio.uart_base+SIO STATUS)& RCV_HASK)));

)

UCHARs_xmstat(void)
(

return ((UCHAR)(inport(sio.uart_base+SIO_STATUS) & XMIT_MASK));
)

I* waits forever for char *I

UCHAR s_getch(void)

(
while(s_rcvstat() == (UCHAR)NULL)

if(kbhit() != (int)NULL)

if(getch() == 'q')
(

_setvideomode(DEFAULTMODE);
restore_int();

II uninit_comm();
exit();

)

return(s_rcv());

)

void s_putch(UCHhRc)

(
while(s_xmstat()== (UCHAR)_LL)

s_xmit(c);
)

/* if chat not available, return NULL */
UCHARs_inchar()
(

return ((UCHhRX(sjcvstat()==(UCHAR)NULL) ? (UCHAR)NULL: s_tcv()));
)

UCHARgetjs232(void)
(

return(inport(sio.uaTt_base+CONTROL_232));

)

void rs232 on(UCHARrs232_mask)
(

outport(sio .uar t_base+CONTROL_232,get_rs232()',r s232_mask);
)

ii@

!

r_

_=

u

E_

i

u

void rs232_off(UCHAR rs232_mask)
{

outport(sic .;&_t base+CONTROL232,getjs232() & ~rs23;- mask);
)

void term(void)

{
int c;

while(1)

(
if(s_rcvstat() != (UCHAR)NULL)

putch(s_rcv());

if(
(

kbhit() !: (int)NULL)

c = getch();

switch(c)

(
case 'q':

return;

)
)

default:

if(c)= 0)

s_putch((UCHAR)c);

)

w

w

m

u

_=

h_

= :

m

ii

L_

w

AR

L =

m

J

U_

E

U

H
W

U

/* CYROt.C --- Communications Program For The CYR07SO ROBOT ,/

/, Writter by

,/

Peter L. Romine ii3_

University of Alabama, Huntsville

Electrical and Computer Engineering Department

Copyright 1991 Peter L. Romine. All rights reserved.

#inctude <stdio.h)

#include 'cyro.h'

#pragma check_stack (off)

struct robot robo;

void compute_lrc(CYRO *msg)

(
UCHAR n;

register UCHAR i,lrc;

irc = msg-)Ien ^ Oxff;

lrc ^= msg-)seq;

Irc ^= msg-)tc;

n = msg-)len - I;

for(i=O; i(n; i++)

lrc ^= msg-)data[i];

msg-)lrc = [rc;
)

UCHAR send_msg(CYRO ,msg)

(
UCHAR n;

_egister UCHAR J;

n z

for(

s_putch(msg-)len);
delay();

s_putch(msg-)seq);

delay();

s_putch(msg-)tc);

msg-)len - 1;

i=0; i(n; i++)

(
delay();

s_putch(msg-)data[i]);

)
delay();

s_putch(msg-)lrc);

return s_getch();

)

_._r_=

W

4q

_m

m

r

u

=mid

Mini

m

f

m

i

L_

delay()
(

int i,n=3

for(i=O; i(Oxfff; i++)

n = n,(-1);

UCHAR get msg(CYRO =msg)

(
UC_R n;

register UCFL_R i,lrc;

msg->len = s getch();

lrc= msg-)len ^ Oxff;
msg-)seq = s getch();

lrc ^= msg-)seq;

msg-)tc = s_getch();

lrc ^= msg-)tc;

n = msg-)len - 1;

for(i=O; i(n; i++)

(
msg->data[i] = s_getch();

Ire ^= msg-)data[i];

msg->Irc = s_getch();

return Irc;

)

float to_inches(UCHAR low, UCHAR high)

(
float flow,fhigh;

flow = (float) low;

fhigh = (float) high;

return (low + 256.0=fhigh)/64.0;

float to_degrees(UCHAR low, UCHARhigh)

{
float flow,fhigh;

flow = (float) low;

fhigh = (float) high;

return (tow + 256.0=fhigh)/tO.O;

5O

n

n

m

[]

u

U

/= CYR011.C --- CommunLcationsProgramFor The CYR07SOROBOT =/

/_ Writt@_ by

_Z

=/

PeterL. Romine 1990

Universityof Alabama.}iu_,tsville

Electricaland ComputerEngineeringDepartment

Copyright1991Pater L. Romine.All rightsreserved.

#include (stdio.h>
#include "menu.h'
#include 'cyro.h'

#pragma checkstack (off)

void cyromessageto_robot(CYRO *msg)
(

UCHAR Irc_in,ack;

msg->seq = O;
msg-)tc = 133;
strcpy(msg-)data,'Message to the robot\r');
msg-)len = strlen(msg-)data) + 1;

compute_lrc(msg);

ack = send msg(msg);
)

z
L_

Z Z

m

U

W

U

m

5]

i

u

n

u

_ =

h
li

mmm

w

r_

H

m

i

L===_

_s

H

/* INIT.C --- CommunicationsProgramFor The CYR0750ROBOT ,/

I* Writtenby
_t

,/

Peter L. Ro_i;,a i990,91

Universityof Alabama,Huntsville

Electricaland ComputerEngineeringDepartment

Copyright1991Peter L. Romine.All rightsreserved.

#include(graph.h)
#include(math.h>

#include(malloc.h)

#include(stdlib.h)

#include(stdio.h)

#include(conio.h)

#include(stddef.h>

#include(time.h)

#include(sys\types.h)

#include(sys\timeb.h)

#include(string.h)

#include'menu.h"

#include'cyro.h'

#pragma check_stack (off)

staticCYRO msg;

int main(intargc,char **argv)
(

register i;
int n=lO0;

UCHAR len,lrc,seq,tc,lrc_in,ack,data[35];

/* Init robo structure */
sio.uart_base = peek(O,(unsigned)(UART_PTR+(2*COMMt)));
sio.commport= O;
sio.int_on= I;

strcpy(robo.stat.program,'Not Running');
strcpy(robo.stat.welding,'Not Welding');
strcpy(robo.device.status,'On');

robo.prog.number = 1;
robo.prog.sizeJ = O;
robo.prog.size_h = O;
strcpy(robo.prog.name,'untitled.ncb');
strcpy(robo.prog.comment,'No Comment');

grab_int();
inpflush();

printf('Waiting for the init message from the CYRO\n');
len = 29;
while(s_getch()]= fen)

52

m

m

I]
E_

M

/, Got the 2g, now get rest of msg */

seq _ s_getch();

tc : s_getch();

for(i:O;i((len-l);i++)

data[i]= s_getch();

Irc_in= s_getch();

s_putch(t);

printf('Got the init, sending the device ID\n');
send_device_id(&msg);

restore_int();

}

W

m

_m

lil

=

u

w

N

=me

u

ld

W

= =

mF_

--=_

u

m

L:|
H

IN

--=

W

E_

iN

H

w

/* LOADP.C --- CommunicationsProgramFor The CYR0750ROBOT ,/

,'_Writtenby

,/

Peter L. Romine ;q90,91

Universityof ' 'P_a_=_na,Huntsville

Electricaland ComputerEngineeringDepartment

Copyright1991 Peter L. Romine.All rightsreserved.

#include(graph.h)
#include (math.h)

#include(malloc.h)

#include(stdlib.h)

#include(stdio.h)

#include(conio.h)

#include(stddef.h)

#include(time.h)

#include(sys\types.h)

#include(sys\timeb.h)

#include(string.h)

#include"menu.h'

#include"cyro.h'

staticCYRO msg;
static char str1140%],str2(t2B];

int main(intargc,char **argv)
(

UCHAR hUm;

FILE ,fp;

if(argc(3)

(
printf('USAGE:1oadp (progW)(file.nc)\n\n');

printf('Loadsthe program in file.ncfrom the PC to the CYRO in locationprog#\n');
exit();

)

num= (UCHAR)atoi(argv[1]);

if(num(t I: hUm)9)

{
printf('ERROR:progW = lid]is invalid.
exit();

)

Must be I to 9 \n',(int)num);

if(!(fp=f_en(argv[2],'rb')))

(
printf('E_0R:openi_ the requestedfile [is]!\n',argv[2]);
exit{);

)

IJ

m

m

w

U

H
==

L

= :

w

H

w

N

N

m

L_
m

/= Init robo structure=/

sio.uart_base= peek(0,(unsigned)(UART_PTR+(2,COMMI)));
sio.commport= O;

strcpy(robo.stat.progr-_m,"NotRunning');

strcpy(robo.star.welding,"NotWelding');

strcpy(robo.device.status,'On");

robo.prog.number= I;

robo.prog.size_l = 0;
robo.prog.size_h = O;
strcpy(robo .prog. name,'untitled. ncb");
strcpy(robo .prog .corment, "No Comment");

grab_int();
sio.int_on = 1;
inpflush();
send_device id(&msg);

strcpy(Tobo.prog.name,argv[2]);
robo.prog.number =num;
printf('Loading _s to CYR0in program slot #td\n',robo.prog.name,robo.prog.number);

cyro_load_prog(&msg);

_estore_int();
)

void cyro loadprog(CYR0 *msg)
{

UCHAR lrc in,ack,thisblock,more,block_cnt;
FILE *fp;
unsigned chat id;
Tegister i,j;
long bytes;

fp = fopen(robo.prog.name,'rb');
bytes = fi lelength(fileno(fp));
robo.prog .size_h = (UCHAR)(bytes/256L);
rob<).prog.size_l = (UCH_R)(bytes - ((long)robo.prog.size_h = 256L));
printf('\nbytes = rid lb = td hb =

td\n' ,bytes ,(int)robo.prog .size_l ,(int)robo.prog .size_h);
f f lush(stdout);

msg-)len = 4;
msg-)seq = 0;
msg-)tc = 194; /= Request for load program from PC */
msg-)data[0] = robo.prog.number;

msg-)data[t] = robo.prog.size_l;
msg-)data[2] = robo.prog.size_h;

compute_Irc(msg);

ack = send_msg(msg);

m

_j

U

J

W

m

lil

I_---I

block_cnt = O;
more = 1;
_hile(more)
{

while(1)

(
Irc in = get msg(msg);
s_putch(i);

if(msg-)data[O] == I)

break;

/* the message should be a Joad acknowledge (TC=65)*/

if(bytes (250)

thisbJock= (UCHAR)bytes;
else

thisblock= 250;

bytes -= thisblock;

msg-)len = thisblock + 2;
msg-)seq = O;
msg-)tc = 195; /, Request for save program from robot ,/
msg-)data[O] = block_cnt+÷;

fread(&(msg-) data [1]),1 ,(size_t)thisblock ,fp);

compute_lrc(msg);
ack = send_msg(msg);

if(bytes (= 0)
break;

)
fclose(fp);

w

m.a

mm

N

=_-

J

W_

H

i,a

m

r_

=-
wM

= =

/* LOAOP.C --- CommunicationsProgramFor The CYR07SOROBOT ,/

/* Writtenb7

_Z

_Z

,/

Peter L. RomSne 1990,91

Universit;"JF Alabama,Huntwille

Electricaland ComputerEngineeringDepartment

Copyright1991Peter L. Romine.All rightsreserved.

#include(graph.h>

#include(math.h>
#include(malloc.h)

#include(stdlib.h)

#include(stdio.h)

#include(conio.h)

#include(stddef.h)

#include(time.h)

#include (sys\types.h)
#include (sys\timeb.h)
#include (string.h)
Winclude 'menu.h'
#include 'cyro.h'

staticCYRO msg;

staticchar strl(4096],str2112B];

int main(intargc,char**argv)
(

UCHAR hUm;

FILE *fp;

if(argc (3)
(

printf('USAGE:1oadp (prog#)(file.nc)\n\n');

printf('Loadsthe program in file.ncfrom the PC to the CYRO in locationprog#\n');
exit();

)

hum = (UC_R) atoi(argv[ll);
if(num(!)I num)9)

(
printf('ERROR:prog# - [td]is invalid.
exit();

)

Must be I to 9 \n',(int)num);

if(!(fp=fopen(argv[2],'rb')))
(

printf('ERROR:opening the requested file Its] l\n',argv[2]);
exit();

)

roll

H
W

W

roll

/* Init robo structure */
sio. uar t_base = peek(0 ,(unsigned)(UART_PTR+(2*COMM1)));
sio.commport : O,

strcpy(yobo.stat oprogram,'Not Running');
strcpy(robo.sLat .welding, 'Not WeLding");
str cpy(robo .device .status, 'On');
robo.prog.number = 1;
robo.prog.size_l = O;
rot_.prog.size_h = O;
strcw(robo .prog.name,"unt itled .ncb');
strcpy(robo.prog .comment,"No Comment");

grab_int();
sio.int_on = 1;
inpJlush();
send_device_£d(&msg);

strcpy(robo.prog.name,argv[2]);
robo.prog.number =num;
printf('Loading %s Co CYROin program slot #%d\n',robo.prog.name,robo.prog.number);

cyro_load_prog(&msg);

restore_int();
}

n

M

= --
W

w

r--
===
u

m

L_

J

void cyroload_prog(CYRO *msg)
(

UCHAR lrc_in,ack,thisblock,more,block_cnt;
FILE ,fp;
unsigned char id;
register l,j;
long bytes;

fp = fopen(robo.prog.naBe,'rb');
bytes = fi lelength(fi leno(fp));
robo .prog .size_h = (UCHAR) (bytes/2561.);
robo.prog.size_J = (UCHAR)(bytes - ((long)robo.prog.size_h * 256L));
prJntf('\nbytes = Lid lb = td hb =

%d\n' ,bytes ,(int)robo.prog.size_J ,(int)robo.prog .size h);
f f lush(stdout);

msg-)len = 4;
msg-)seq = O;
msg-)tc = 194; /* Request for load pr_rem from PC =/
msg-)data[O] = robo.prog.number;

msg-)data[1] = robo.prog.size_J;
msg-)da_[2] = robo.prog.size_h;

compute_lrc(ug);

ack = send_msg(msg);

w

=;Q

m

m=l

w

m

u

5

H

H
m

u

block_cnt = 0;
more = 1;
while(more)
(

while(t)
(

lrcin = get_msg(msg);
s_putch(1);
if(msg-)data[0] == 1)

break;

/, the messageshould be a load acknowledge (TC=65),/

if(bytes < 250)
thisblock = (UCHhR)bytes;

else
thisblock = 250;

bytes -= thisblock;

msg->len = thisblock + 2;
msg-)seq = 0;
msg-)tc = 195; /* Request for save program from robot ,/
msg-)data[0] = bIock cnt++;

fr ead(&(msg-)data [Z]), i ,(size_t)thisbtock, fp);

compute_lrc(msg);
ack = send_msg(msg);

if(bytes <= 0)
break;

}
fclose(fp);

u

= =

w

M

=

i

w

_ I

B

z

= =

m

m
1

L_

l

_ =

1

I

/, RUNP.C --- Communications Program For The CYR0750ROBOT*/

/* Writtenby

,/

PeterL. Romine 1990,91

U,iv::sityof Alabama,Huntsville

Electricaland ComputerEngineering Department

Copyright1991Peter L. Romine.All rights reserved.

#include(graph.h)
#include(math.h)

#include(malloc.h)

#include(stdlib.h)

#include(stdio.h)

#include(conio.h)

#include(stddef.h)

#include(time.h)

#include(sys\types.h)
#include (sys\timeb.h)
#include (string.h)
#include "menu.h'
#include 'cyro.h'

static CYRO msg;
static char strl[40%],str21128];

int mai_int argc,char **argv)
(

UCHAR hum;
FILE ,fp_

if(argc (2)
(

printf('UShGE: runp (prog#)\n\n');

printf('Runsthe CYRO programin locationptog#\n');

exit();
)

num= (UCHAR)atoi(argv[1]);

if(num(t II num)9)
(

printf('ERROR:prog# = [td]

exit();
)

is invalid. Must be I to g \n',(int)num);

!

H

1

U

W
U

H

[]

w

U

N

/* Init robo structure,/

sio.uart_base= peek(O,(unsigned)(UART_PTR+(2*COMM1)));
sio commpo,__ _"

strcpy(tob_.stat.ptogtam,'NotRunning');

strcpy(robo.stat.welding,'NotWelding');

strcpy(robo.device.status,'On');

robo.prog.number = I;
robo.prog.size 1 = 0;
robo.prog.size_h = 0;
strcpy(robo.prog.name,'untitled.ncb');
strcpy(robo.prog.comment,'No Comment');

grab_int();
sio.int_on = 1;
inp_flush();

send device_id(&msg);

_obo.prog.number = hum;
printf('Starting CYR0program slot #td\n',robo.prog.number);
cytorun_prog(&msg);

restorejnt();

void cyroTun_prog(CYR0 ,msg)
(

UCHAR ack;

msg-)len = 3;
msg-)seq = 0;
msg-)tc = 130; /* set program mode ,/
msg-)data[0] = 1; /* t=start, 2=stop ,/

msg-)data[1] = robo.prog.number; /, Program # (1-9) */

compute_Irc(msg);

ack = send_msg(msg);
)

r_
w

1

1

L _
U

mm

r,_

ram=

m

= :

H
u

z

= ,

mm

Imml

[]

i

/, HALTP.C --- CommunicationsProgramFor The CYR0750ROBOT =/

/* Writtenby

_Z

,/

PeterL. Romine L??O,gl

Universityof Alabama,Huntsville

Electricaland ComputerEngineeringDepartment

Copyright1991 Peter L. Romine.All rightsreserved.

#include(graph.h)
#include (math.h)

#include(malloc.h)

#include(stdlib.h)

#include(stdio.h)

#include(conio.h)

#include(stddef.h)

#include(time.h)

_include(sys\types.h)

#include(sys\timeb.h)

#include (string.h)
#include 'menu.h"
#include 'cyro.h'

staticCYRO msg;

int mai_int argc,char *,argv)
(

UCHAR num;

if(argc (2)

(
printf('USAGE:haltp (prog#)\n\n');

printf('Stopsthe CYRO programin locationprog#\n');
exit();

)

num= (UCHAR)atoi(argv[1]);

if(num(1 II num)9)

(
printf('ERROR:prog# = [%d] is invalid.

exit();
)

Must be I to 9 \n',(int)num);

mm_

U

F_

= =

m

[]

U

M
= =

M

w

L_

_--=

N

/, Init robo structure ,/
sio. uar t_base = peek(0 ,(unsigned)(UARTPTR+(2*COMM1)));
sio.commport = O;
sio.int_on = 1;

strcpy(robo.stat.pTogram,'Not Running');
strcpy(Tobo.stat.#elding,'Not Welding');
strcpy(robo.device.status,'On');
robo.prog.number = 1;
robo.prog.size_l = O;
robo.prog.size_h = O;
strcpy(robo.prog.name,'untitled.ncb');
strcpy(robo.prog.comment,'No Comment');

grab_i nt();
inp_flush();
send_device_id(&msg);

robo.prog.numbeT =num;
printf('Halting CYROprogTams|ot #td\n',robo.prog.number);

cyro_stop_prog(&lasg);

restore_int();

void cyro_stop_prog(CYRO*msg)
(

UCHAR lrc_in,ack;

msg-)len = 3;
msg-)seq = O;
msg-)tc = t30; /* set program mode ,/
msg-)data[O] = 2; /* l=start, 2=sLop ,/

msg-)data[t] = robo.prog.number; /, Program # (1-9) */

compute_lrc(msg);

ack = send_msg(msg);

lrc_in = get_msg(msg);

if(lrc_in == msg->lrc)
(

s putch(t);
)
else
(

s_Dutch(2);

w

63

mm

W

l

U

m

u

U

= =

m

L--

U

m

/* SAVEP.C --- CommunicationsProgramFor The CYR0750ROBOT */

/, Wriit._nby

xt_t

,/

Peter L. Romine 1990,91

Universityof Alabama,Hunt_ville

Electricaland ComputerEngineeringDepartment

Copyright1991Peter L. Romine.All rightsreserved.

#include(graph.h)
#include(math.h)

#include(malloc.h)

#include(stdlib.h)

#include(stdio.h)

#include(conio.h)

#incJude(stddef.h)

#include(time.h)

#include(sys\types.h)

#include(sys\timeb.h)

#include(string.h)

#include"menu.h"

#include"cyro.h'

staticCYRO msg;

int main(intargc,char**argv)
(

UCHAR hUm;

FILE ,fp;

if(argc(3)
(

printf('USAGE: savep (prog#) (file.nc)\n\n');
printf('Saves the CYROprogram in location prog# to the PC in file.nc\n');
exit();

)

hum = (UCHAR)atoi(argv[1]);

if(num(1 II num)9)

{
printf('ERROR:prog# = [%d]is invalid.

exit();
)

Must be 1 to 9 \n',(int)num);

m

mm_

m

_4

u

u

M
u

m

w

E_

c

m

r_

_j
H

m

m

L_
M

W

m

==

N

if((fp=fopen(argv[2] ,'rb')))
{

printf('WARNING:Th: requested file [%s] already existsm\n ',ar,Jv[1]);
printf(" Do you _Jantto write over it (Y/N)?');

switch(getchar())

(
case 'y':
case 'Y':

fclose(fp);
break;

default:

fc lose(fp);
exit();

)

I* Init robostructure,I

sio.uart_base= peek(O,(unsigned)(UART_PTR+(2,COMM1)));
sio.commport= O;

sio.int_on= I;

strcw(robo.stat.program,'Not Running');
strcw(robo.stat.welding,'Not Welding');
strcw(robo.device.status,'0n');

robo.prog.number = 1;
robo.prog.size_l = 0;
robo.prog.size_h = 0;
strcpy(robo.prog.name,'untitled.ncb');
strcpy(robo.prog.comment,'No Comment');

grab_int();
£npJlush();
send device_id(&msg);

robo.prog.number =num;
strcpy(robo.prog.name,argv[2]);
printf('Saving CYR0program Wtd to PC in file %s\n',robo.prog.number,robo.prog.name);

cyro save_prog(&msg);

restore_int();
)

65

S i

==--

U

=_
m

H

m

_4

r--

N

fm_

N

=.£

void cyro_saveprog(CYRO *msg)
(

UCHAR lrc_in,ack,thisbleck,more;
FILE ,fp;
register i;
long bytes;

msg-)len = 2;
msg-)seq = O;
msg-)tc = 193; /* Request for save program from robot ,/
msg-)data[O] = robo.prog,number;

compute_l r c(msg);
ack = send msg(msg);

lrc_in = get_msg(msg);
s_putch(1);

/, the message should be a save acknowledge (TC=66)=/

robo.prog.size_l = msg-)data [2] ;
robo.prog.size_h = msg-)data[3];
bytes = (long)msg-)data[2] + 25(>L , (long)msg-)data[3] ;

fp = fopen(robo.prog.name,'wb');
printf('\nbytes = tld lb = td
more : 1;

while(more)
(

lrc_in = get_msg(Msg);
s_putch(1);

hb = tdXn' ,bytes,(int)msg-)data [2] ,(int)msg-)data [3]);

thisblock = msg-)len - 2;
fvr i re(&(msg->data (1]), 1 ,(size_t)thisbJock, fp);

bytes -= thisbJock;
if(bytes <= 0)

break;

msg-)len = 2;
msg-)seq = O;
msg-)tc = 193; /, Request for save program from robot ,/
msg-)data [0] = robo.prog.number;
compute lrc(msg);
ack = send_msg(msg);
)

fclose(fp);
)

66

w

H
u

IBm

r_

w

D
E_

W

n

U

H

w

/* LISTP.C --- CommunicationsProgramFor The CYR0750ROBOT */

/: Writtenby

,/

Peter L. Romine IQ90,91

Universityof hlctz_a,Huntsville

Electricaland ComputerEngineeringDepartment

Copyright1991Peter L. Romine.All rightsreserved.

#include(math.h)

#include(stdlib.h)

#include(stdio.h)

#include(conio.h)

#include(stddef.h)

#incJude (sys\types.h)
#include (string.h)

staticchar str114096],str2112B];

int main(intargc,char=*argv)
(

FILE ,fp;

register [,j;
unsignedchar id;

long bytes;

char comment[90],size_l,size_h;

if(argc (2)

(
printf('USAGE:listp (file.nc)\n\n');

printf('Liststhe programin file.ncfrom on the PC\n');
exit();

}

if(
(

!(fp=fopen(argv[1], 'rb")))

printf('ERROR:opening the requested file [ts] i\.',argv[1]);
exit();

)

frsed(&id, 1,1 ,fp);
switch(id)
(
case Ox12: /* Binary NC File */

fread(comment ,80,1, fp);
printf(comment);
pr intf('\n\n");
fread(&(size_!),l,l,fp);
fread(&(size_h),t,l,fp);
bytes = (long)size_l + 256L . (long)sizeh;
break;

default:

rewind(fp);
bytes = (long) freed(strl,I,(size_t)4096,fp);

67

m

w

F =

n

g

Imm

U

g
u

W

U

u

n

break;
}

fread(str 1,1 ,(sizet)bytes,fo);

j=O;
for(i=O; i(bytes; i++)

{
str2[j++]= strl[i];

switch(strt [i])
(

case '/' :

i++;
case OxOd:

i++;

case OxOa:
str2[j-1] = OxO0;
strcat(str2,"l\n');

j=O;

printf(str2);

)

fclose(fp);
)

w

===

I

u

68

L-

u

/* edtonc.C --- CommunicationsProgramFor The CYR0750ROBOT ,/

/* Writtenby
**

*/

Percy L. Romine 1990,91

Universityof Alabama,Huntsville

Electricaland ComputerEngineeringDepartment

Copyright1991Peter L. Romine.All rightsreserved.

= =

==

M
m

U

L_

W

H
U

W

F_

I

w

i

#include(math.h)

#include(io.h)

#include(errno.h)

#include<stdlib.h)

#include(stdio.h)

#include<conio.h)

#include(stddef.h)

#include(sys\types.h)

#include(string.h)

staticchar strl[4096],str2[128];

int main(intargc,char**argv)
(

FILE *fpin,,fpout;

register i,j;

unsignedchar id;

long bytes;

char comment[90],size_l,size_h;

if(argc (3)
(

printf('USAGE: edtonc (infile.ed) (outfile.nc)\nkn');
printf('Converts the editor program infile.ed to CYROformat outfile.nc\n');
exit();

)

if(!(fpin=fopen(argv[1],'rb')))
(

pTintf('ERROR: opening the requested infile [ts]!\n',argv[1]);
exit();

)

if(!(fpout=fopen(argv[2],"wb")))
(

printf('ERROR:opening the requested outfile [ts] I\n',argv[2]);
exit();

printf('Converting the editor file Its] to the CYROfile [ts]\n',argv[t] ,argv[2]);

69

c

= =

= =
mmm

U

w

m_
w

=_]

M

w

w

H
m

fread(&id,i,i,fpin);

switch(£d)

(
case 0x12: /, Binm'v NC File */

fread(comment,80,i,fpin);

pTintf(comment);

printf("\n\n');

fTead(&(size_I),I,1,fpin);

fread(&(size_h),1,I,fpin);

bytes - (1ong)size_1+ 256L * (long)size_h;

break;

default:

Tewind(fpin);

bytes = fJlelength(fileno(fpin));
break;

)

fread(str 1,1 ,(size_t)bytes,fpin);-

j=O;
foT(i=O;i(bytes;i+÷)

(
switch(stTl[i])

(
case '/' :

break;

case OxOd:
break;

case OxOa:
str2[j++] = OxOa;

fwrite(str2,j,l,fpout);

j = O;
break;

default:
str2[j++] = strl [i] ;

break;

}

fclose(fpin);
fclose(fpout);

IBD

W

| J

7O

