25,197 research outputs found

    Non-unitary representations of the SU(2) algebra in the Dirac equation with a Coulomb potential

    Full text link
    A novel realization of the classical SU(2) algebra is introduced for the Dirac relativistic hydrogen atom defining a set of operators that, besides, allow the factorization of the problem. An extra phase is needed as a new variable in order to define the algebra. We take advantage of the operators to solve the Dirac equation using algebraic methods. To acomplish this, a similar path to the one used in the angular momentum case is employed; hence, the radial eigenfuntions calculated comprise non unitary representations of the algebra. One of the interesting properties of such non unitary representations is that they are not labeled by integer nor by half-integer numbers as happens in the usual angular momentum representation.Comment: 20 pages 1 eps figure in a single zipped file, submitted to J. Math. Phy

    Capturing pattern bi-stability dynamics in delay-coupled swarms

    Full text link
    Swarms of large numbers of agents appear in many biological and engineering fields. Dynamic bi-stability of co-existing spatio-temporal patterns has been observed in many models of large population swarms. However, many reduced models for analysis, such as mean-field (MF), do not capture the bifurcation structure of bi-stable behavior. Here, we develop a new model for the dynamics of a large population swarm with delayed coupling. The additional physics predicts how individual particle dynamics affects the motion of the entire swarm. Specifically, (1) we correct the center of mass propulsion physics accounting for the particles velocity distribution; (2) we show that the model we develop is able to capture the pattern bi-stability displayed by the full swarm model.Comment: 6 pages 4 figure

    An algebraic SU(1,1) solution for the relativistic hydrogen atom

    Full text link
    The bound eigenfunctions and spectrum of a Dirac hydrogen atom are found taking advantage of the SU(1,1)SU(1, 1) Lie algebra in which the radial part of the problem can be expressed. For defining the algebra we need to add to the description an additional angular variable playing essentially the role of a phase. The operators spanning the algebra are used for defining ladder operators for the radial eigenfunctions of the relativistic hydrogen atom and for evaluating its energy spectrum. The status of the Johnson-Lippman operator in this algebra is also investigated.Comment: to appear in Physics Letters A (2005). We corrected a misprint in page 7, in the paragraph baggining with "With the value of ..." the ground state should be |\lambda, \lambda>, not |\lambda, \lambda+1

    Increase of the Energy Necessary to Probe Ultraviolet Theories Due to the Presence of a Strong Magnetic Field

    Full text link
    We use the gauge gravity correspondence to study the renormalization group flow of a double trace fermionic operator in a quark-gluon plasma subject to the influence of a strong magnetic field and compare it with the results for the case at zero temperature and no magnetic field, where the flow between two fixed points is observed. Our results show that the energy necessary to access the physics of the ultraviolet theory increases with the intensity of the magnetic field under which the processes happen. We provide arguments to support that this increase is scheme independent, and to exhibit further evidence we do a very simple calculation showing that the dimensional reduction expected in the gauge theory in this scenario is effective up to an energy scale that grows with the strength of such a background field. We also show that independently of the renormalization scheme, the coupling of the double trace operators in the ultraviolet fixed point increases with the intensity of the background field. These effects combined can change both, the processes that are expected to be involved in a collision experiment at a given energy and the azimuthal anisotropy of the measurements resulting of them.Comment: 23 pages, 10 figures. Added section about renormalization scheme independenc

    Noise, Bifurcations, and Modeling of Interacting Particle Systems

    Full text link
    We consider the stochastic patterns of a system of communicating, or coupled, self-propelled particles in the presence of noise and communication time delay. For sufficiently large environmental noise, there exists a transition between a translating state and a rotating state with stationary center of mass. Time delayed communication creates a bifurcation pattern dependent on the coupling amplitude between particles. Using a mean field model in the large number limit, we show how the complete bifurcation unfolds in the presence of communication delay and coupling amplitude. Relative to the center of mass, the patterns can then be described as transitions between translation, rotation about a stationary point, or a rotating swarm, where the center of mass undergoes a Hopf bifurcation from steady state to a limit cycle. Examples of some of the stochastic patterns will be given for large numbers of particles
    • 

    corecore