29 research outputs found

    Introduction to a Culturally Sensitive Measure of Well-Being: Combining Life Satisfaction and Interdependent Happiness Across 49 Different Cultures

    Get PDF
    How can one conclude that well-being is higher in country A than country B, when well-being is being measured according to the way people in country A think about well-being? We address this issue by proposing a new culturally sensitive method to comparing societal levels of well-being. We support our reasoning with data on life satisfaction and interdependent happiness focusing on individual and family, collected mostly from students, across forty-nine countries. We demonstrate that the relative idealization of the two types of well-being varies across cultural contexts and are associated with culturally different models of selfhood. Furthermore, we show that rankings of societal well-being based on life satisfaction tend to underestimate the contribution from interdependent happiness. We introduce a new culturally sensitive method for calculating societal well-being, and examine its construct validity by testing for associations with the experience of emotions and with individualism-collectivism. This new culturally sensitive approach represents a slight, yet important improvement in measuring well-being

    Exchange Reactions between Alkanethiolates and Alkaneselenols on Au{111}

    Full text link
    When alkanethiolate self-assembled monolayers on Au{111} are exchanged with alkaneselenols from solution, replacement of thiolates by selenols is rapid and complete, and is well described by perimeter-dependent island growth kinetics. The monolayer structures change as selenolate coverage increases, from being epitaxial and consistent with the initial thiolate structure to being characteristic of selenolate monolayer structures. At room temperature and at positive sample bias in scanning tunneling microscopy, the selenolate-gold attachment is labile, and molecules exchange positions with neighboring thiolates. The scanning tunneling microscope probe can be used to induce these place-exchange reactions

    Design of a Bimetallic Au/Ag System for Dechlorination of Organochlorides: Experimental and Theoretical Evidence for the Role of the Cluster Effect

    No full text
    The experimental study of dechlorination activity of a Au/Ag bimetallic system has shown formation of a variety of chlorinated bimetallic Au/Ag clusters with well-defined Au:Ag ratios from 1:1 to 4:1. It is the formation of the Au/Ag cluster species that mediated C–Cl bond breakage, since neither Au nor Ag species alone exhibited a comparable activity. The nature of the products and the mechanism of dechlorination were investigated by ESI-MS, GC-MS, NMR, and quantum chemical calculations at the M06/6-311G­(d)&SDD level of theory. It was revealed that formation of bimetallic clusters facilitated dechlorination activity due to the thermodynamic factor: C–Cl bond breakage by metal clusters was thermodynamically favored and resulted in the formation of chlorinated bimetallic species. An appropriate Au:Ag ratio for an efficient hydrodechlorination process was determined in a joint experimental and theoretical study carried out in the present work. This mechanistic finding was followed by synthesis of molecular bimetallic clusters, which were successfully involved in the hydrodechlorination of CCl<sub>4</sub> as a low molecular weight environment pollutant and in the dechlorination of dichlorodiphenyl­trichloroethane (DDT) as an eco-toxic insecticide. High activity of the designed bimetallic system made it possible to carry out a dechlorination process under mild conditions at room temperature
    corecore