52 research outputs found

    Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation

    Full text link
    The first globally convergent numerical method for a Coefficient Inverse Problem (CIP) for the Riemannian Radiative Transfer Equation (RRTE) is constructed. This is a version of the so-called \textquotedblleft convexification" principle, which has been pursued by this research group for a number of years for some other CIPs for PDEs. Those PDEs are significantly different from RRTE. The presence of the Carleman Weight Function (CWF) in the numerical scheme is the key element of the convexification. CWF is the function, which is involved as the weight function in the Carleman estimate for the corresponding PDE operator. Convergence analysis is presented along with the results of numerical experiments, which confirm the theory. RRTE governs the propagation of photons in the diffuse medium in the case when they propagate along geodesic lines between their collisions. Geodesic lines are generated by the spatially variable dielectric constant of the medium

    Robotic magnetic navigation-guided catheter ablation establishes highly effective pulmonary vein isolation in patients with paroxysmal atrial fibrillation when compared to conventional ablation techniques

    Get PDF
    Introduction: Pulmonary vein isolation (PVI) is a pivotal part of ablative therapy for atrial fibrillation (AF). Currently, there are multiple techniques available to realize PVI, including: manual-guided cryoballoon (MAN-CB), manual-guided radiofrequency (MAN-RF), and robotic magnetic navigation-guided radiofrequency ablation (RMN-RF). There is a lack of large prospective trials comparing contemporary RMN-RF with the more conventional ablation techniques. This study prospectively compared three catheter ablation techniques as treatment of paroxysmal AF. Methods: This multicenter, prospective study included patients with paroxysmal AF who underwent their first ablation procedure. Procedural parameters (including procedural efficiency), complication rates, and freedom of AF during 12-month follow-up, were compared between three study groups which were defined by the utilized ablation technique. Results: A total of 221 patients were included in this study. Total procedure time was significantly shorter in MAN-CB (78 ± 21 min) compared to MAN-RF (115 ± 41 min; p &lt;.001) and compared to RMN-RF (129 ± 32 min; p &lt;.001), whereas it was comparable between the two radiofrequency (RF) groups (p =.062). A 3% complication rate was observed, which was comparable between all groups. At 12-month follow-up, AF recurrence was observed in 40 patients (19%) and was significantly lower in the robotic group (MAN-CB 19 [24%], MAN-RF 16 [23%], RMN-RF 5 [8%] AF recurrences, p =.045) (multivariate hazard ratio of RMN-RF on AF recurrence 0.32, 95% confidence interval: 0.12–0.87, p =.026). Conclusion: RMN-guided PVI results in high freedom of AF in patients with paroxysmal AF, when compared to cryoablation and manual RF ablation. Cryoablation remains the most time-efficient ablation technique, whereas RMN nowadays has comparable efficiency with manual RF ablation.</p

    Modelling effects of phytobiotic administration on coherent responses to Salmonella infection in laying hens

    Get PDF
    Practice of layer poultry farming and commercial egg production relies on the optimal use and improvement of the welfare and genetically determined functional abilities of laying hens, their efficient intake of feed and its components, adaptation to housing conditions and resistance to infectious diseases including salmonellosis. Previous studies were focussed on relationships of chicken performance and resistance with the expression profiles of individual genes involved in metabolic processes and immune system, or with genetic markers that can be closely associated with these processes in chickens. In this study, mathematical models of coherent changes in laying hens were developed for the expression of eight genes involved in immunity and metabolism, on the one hand, and biochemical and immunological blood parameters, on the other hand, in response to Salmonella infection and administration of a phytobiotic Intebio. The proposed modelling approach can be a further basis for an in-depth research of the relationship between the gene expression, functional state and welfare of poultry, impact of pathogenic microorganisms and use of immunomodulatory drugs

    SYNTHESIS OF THICK GALLIUM NITRIDE LAYERS BY METHOD OF MULTI-STAGE GROWTH ON SUBSTRATES WITH COLUMN STRUCTURE

    Get PDF
    Subject of Research.The paper deals with processes of formation and transformation of defects during multi-stage growth of thick gallium nitride layers with hydride vapor phase epitaxy on GaN/Al2O3 substrates with buried column pattern formed with the use of metal-organic vapor phase epitaxy. Methods. The growth of initial GaN layers was performed with the use of metal-organic vapor phase epitaxy. On the surface of the initial layers columns with the height of 800 nm were generated by means of ion etching. These columns were overgrown with 3-4 µm-thick GaN layers. On thus formed substrate multi-stage growth of GaN layers was performed with the use of hydride vapor-phase epitaxy. The total thickness of GaN layers was 100-1500 µm. The grown layers were studied by optical and electron microscopy and Raman spectroscopy. Main Results. Density of threading dislocations in the layers grown by hydride vapor-phase epitaxy was (3-6)·107 cm-2, that was one order of magnitude lower than in the used substrate, and two to three orders lower than dislocation density in typical GaN layers grown on commercial sapphire substrates. Raman spectroscopy data were indicative of low level of mechanical stress in the layers and their high structural uniformity. It was established that under multi-stage growth conditions, non-catastrophic cracks (those that do not cause sample destruction) are able to transform into macropores and appear to be an important structural element, serving to stress relaxation in the bulk of thick gallium nitride layers grown on foreign substrates. Practical Relevance. The results of the study can be used in the development of III-nitride heterostructures for optoelectronics and high-power and high-frequency microelectronics

    Dissecting selective signatures and candidate genes in grandparent lines subject to high selection pressure for broiler production and in a local Russian chicken breed of Ushanka

    Get PDF
    Breeding improvements and quantitative trait genetics are essential to the advancement of broiler production. The impact of artificial selection on genomic architecture and the genetic markers sought remains a key area of research. Here, we used whole-genome resequencing data to analyze the genomic architecture, diversity, and selective sweeps in Cornish White (CRW) and Plymouth Rock White (PRW) transboundary breeds selected for meat production and, comparatively, in an aboriginal Russian breed of Ushanka (USH). Reads were aligned to the reference genome bGalGal1.mat.broiler.GRCg7b and filtered to remove PCR duplicates and low-quality reads using BWA-MEM2 and bcftools software; 12,563,892 SNPs were produced for subsequent analyses. Compared to CRW and PRW, USH had a lower diversity and a higher genetic distinctiveness. Selective sweep regions and corresponding candidate genes were examined based on ZFST, hapFLK, and ROH assessment procedures. Twenty-seven prioritized chicken genes and the functional projection from human homologs suggest their importance for selection signals in the studied breeds. These genes have a functional relationship with such trait categories as body weight, muscles, fat metabolism and deposition, reproduction, etc., mainly aligned with the QTLs in the sweep regions. This information is pivotal for further executing genomic selection to enhance phenotypic traits
    corecore