527 research outputs found
First constraints on the magnetic field strength in extra-Galactic stars: FORS2 observations of Of?p stars in the Magellanic Clouds
Massive O-type stars play a dominant role in our Universe, but many of their
properties remain poorly constrained. In the last decade magnetic fields have
been detected in all Galactic members of the distinctive Of?p class, opening
the door to a better knowledge of all O-type stars. With the aim of extending
the study of magnetic massive stars to nearby galaxies, to better understand
the role of metallicity in the formation of their magnetic fields and
magnetospheres, and to broaden our knowledge of the role of magnetic fields in
massive star evolution, we have carried out spectropolarimetry of five
extra-Galactic Of?p stars, as well as a couple of dozen neighbouring stars. We
have been able to measure magnetic fields with typical error bars from 0.2 to
1.0 kG, depending on the apparent magnitude and on weather conditions. No
magnetic field has been firmly detected in any of our measurements, but we have
been able to estimate upper limits to the field values of our target stars. One
of our targets, 2dFS 936, exhibited an unexpected strengthening of emission
lines. We confirm the unusual behaviour of BI 57, which exhibits a 787 d period
with two photometric peaks and one spectroscopic maximum. The observed
strengthening of the emission lines of 2dFS 936, and the lack of detection of a
strong magnetic field in a star with such strong emission lines is at odd with
expectations. Together with the unusual periodic behaviour of BI 57, it
represents a challenge for the current models of Of?p stars. The limited
precision that we obtained in our field measurements (in most cases as a
consequence of poor weather) has led to field-strength upper limits that are
substantially larger than those typically measured in Galactic magnetic O
stars. Further higher precision observations and monitoring are clearly
required.Comment: Accepted by A&
Numerical modeling of the rheological characteristic of olive paste under different conditioning treatments: Traditional malaxation, high-frequency ultrasound and microwave
Olive paste, a mixture of olive oil, vegetation water and solid particles, have a complex rheological behavior. Its viscosity (μ) cannot be considered as constant and depends on several parameters. The olive paste changes its rheological characteristics from the inlet to the outlet of the olive oil extraction line because of temperature increase and variation in fluid composition (i.e., solid-liquid m). A numerical analysis was carried out using different mathematical models to predict the apparent viscosity of olive paste as a function of the solids and olive oil volume fractions. Experimental trials were carried out processing the olive paste using different techniques: traditional malaxing (TM), the use of megasound (MS) and the use of microwaves (MW). The collected data consisted of apparent viscosity values, the related shear strain rates and the composition of the olive paste. These data were interpolated using a power law model whose parameters were determined by means of a linear regression in a bi-logarithmic scale at each step of the olive milling process. As a result of comparison with the experimental data, the different models were found to be quite effective for describing the relative viscosity behavior and the obtained solid volume fraction obtained after the three different processing methods confirms the best behavior of the MS technique. As a final consideration, the results of this work represent another step toward full comprehension of the physical characteristics of the olive paste finalizes to improve the solid-liquid separation in olive oil centrifugal decanters
Is there a mass discrepancy in the Cepheid binary OGLE-LMC-CEP0227?
Context. The Cepheid mass discrepancy, the difference between masses
predicted from stellar evolution and stellar pulsation calculations, is a
challenge for the understanding of stellar astrophysics. Recent models of the
eclipsing binary Cepheid OGLE-LMC-CEP-0227 have suggested that the discrepancy
may be resolved. Aims. We explore for what physical parameters do stellar
evolution models agree with the measured properties of OGLE-LMC-CEP0227 and
compare to canonical stellar evolution models assuming no convective core
overshooting. Methods. We construct state-of-the-art stellar evolution models
for varying mass, metallicity, and convective core overshooting and compare the
stellar evolution predictions with the observed properties. Results. The
observed mass, effective temperature, and radius of the two stars in the binary
system are well fit by numerous combinations of physical parameters, suggesting
a Cepheid mass discrepancy of 10-20% relative to canonical stellar evolution
models. Conclusions. The properties of the observed binary Cepheid suggest that
the Cepheid mass discrepancy is still a challenge and requires more specific
observations, such as the rate of period change, to better constrain and
understand the necessary physics for stellar evolution models to resolve the
discrepancy.Comment: 5 pages, 3 figures, A&A accepte
On the distance of the Magellanic Clouds using Cepheid NIR and optical-NIR Period Wesenheit Relations
We present the largest near-infrared (NIR) data sets, , ever collected
for classical Cepheids in the Magellanic Clouds (MCs). We selected fundamental
(FU) and first overtone (FO) pulsators, and found 4150 (2571 FU, 1579 FO)
Cepheids for Small Magellanic Cloud (SMC) and 3042 (1840 FU, 1202 FO) for Large
Magellanic Cloud (LMC). Current sample is 2--3 times larger than any sample
used in previous investigations with NIR photometry. We also discuss optical
photometry from OGLE-III. NIR and optical--NIR Period-Wesenheit (PW)
relations are linear over the entire period range () and their slopes are, within the intrinsic dispersions, common between the
MCs. These are consistent with recent results from pulsation models and
observations suggesting that the PW relations are minimally affected by the
metal content. The new FU and FO PW relations were calibrated using a sample of
Galactic Cepheids with distances based on trigonometric parallaxes and Cepheid
pulsation models. By using FU Cepheids we found a true distance moduli of
mag (LMC) and
mag (SMC). These estimates
are the weighted mean over ten PW relations and the systematic errors account
for uncertainties in the zero-point and in the reddening law. We found similar
distances using FO Cepheids
( mag [LMC] and
mag [SMC]). These new MC
distances lead to the relative distance, mag (FU, ) and mag (FO, ),which agrees quite
well with previous estimates based on robust distance indicators.Comment: 17 pages, 7 figure
Performance of the Vignale-Kohn functional in the linear response of metals
Recently the linear response of metallic solids has been formulated within the time-dependent current-density-functional approach [Romaniello and de Boeij, Phys. Rev. B 71, 155108 (2005)]. The implementation, which originally used only the adiabatic local density approximation for the exchange-correlation kernel is extended in order to include also the Vignale-Kohn current functional. Within this approximation the exchange-correlation kernel is frequency dependent, thus relaxation effects due to electron-electron scattering can now be taken into account and some deficiencies of the adiabatic local density approximation (ALDA), as the absence of the low-frequency Drude-like tail in absorption spectra, can be cured. We strictly follow the previous formulation of the linear response of semiconductors by using the Vignale-Kohn functional [Berger, de Boeij, and van Leeuwen, Phys. Rev. B 71, 155104 (2005)]. The self-consistent equations for the interband and intraband contributions to the induced density and current density, which are completely decoupled within the ALDA and in the long-wavelength limit, now remain coupled. We present our results calculated for the optical properties of the noble metals Cu, Ag, and Au and we compare them with measurements found in literature. In the case of Au we treat the dominant scalar relativistic effects using the zeroth-order regular approximation in the ground-state density-functional-theory calculations, as well as in the time-dependent response calculations
On the metallicity distribution of classical Cepheids in the Galactic inner disk
We present homogeneous and accurate iron abundances for almost four dozen
(47) of Galactic Cepheids using high-spectral resolution (R40,000) high
signal-to-noise ratio (S/N 100) optical spectra collected with UVES at
VLT. A significant fraction of the sample (32) is located in the inner disk (RG
6.9 kpc) and for half of them we provide new iron abundances. Current
findings indicate a steady increase in iron abundance when approaching the
innermost regions of the thin disk. The metallicity is super-solar and ranges
from 0.2 dex for RG 6.5 kpc to 0.4 dex for RG 5.5 kpc. Moreover,
we do not find evidence of correlation between iron abundance and distance from
the Galactic plane. We collected similar data available in the literature and
ended up with a sample of 420 Cepheids. Current data suggest that the mean
metallicity and the metallicity dispersion in the four quadrants of the
Galactic disk attain similar values. The first-second quadrants show a more
extended metal-poor tail, while the third-fourth quadrants show a more extended
metal-rich tail, but the bulk of the sample is at solar iron abundance.
Finally, we found a significant difference between the iron abundance of
Cepheids located close to the edge of the inner disk ([Fe/H]0.4) and
young stars located either along the Galactic bar or in the nuclear bulge
([Fe/H]0). Thus suggesting that the above regions have had different
chemical enrichment histories. The same outcome applies to the metallicity
gradient of the Galactic bulge, since mounting empirical evidence indicates
that the mean metallicity increases when moving from the outer to the inner
bulge regions.Comment: 10 pages, 5 figures; Corrected typos, corrected Table
Neurorestorative effects of cerebellar transcranial direct current stimulation on social prediction of adolescents and young adults with congenital cerebellar malformations
Background: Converging evidence points to impairments of the predictive function exerted by the cerebellum as one of the causes of the social cognition deficits observed in patients with cerebellar disorders. Objective: We tested the neurorestorative effects of cerebellar transcranial direct current stimulation (ctDCS) on the use of contextual expectations to interpret actions occurring in ambiguous sensory sceneries in a sample of adolescents and young adults with congenital, non-progressive cerebellar malformation (CM). Methods: We administered an action prediction task in which, in an implicit-learning phase, the probability of co-occurrence between actions and contextual elements was manipulated to form either strongly or moderately informative expectations. Subsequently, in a testing phase, we probed the use of these contextual expectations for predicting ambiguous (i.e., temporally occluded) actions. In a sham-controlled, within-subject design, participants received anodic or sham ctDCS during the task. Results: Anodic ctDCS, compared to sham, improved patients’ ability to use contextual expectations to predict the unfolding of actions embedded in moderately, but not strongly, informative contexts. Conclusions: These findings corroborate the role of the cerebellum in using previously learned contextual associations to predict social events and document the efficacy of ctDCS to boost social prediction in patients with congenital cerebellar malformation. The study encourages the further exploration of ctDCS as a neurorestorative tool for the neurorehabilitation of social cognition abilities in neurological, neuropsychiatric, and neurodevelopmental disorders featured by macro- or micro-structural alterations of the cerebellum
The Carina Project. X. On the kinematics of old and intermediate-age stellar populations
We present new radial velocity (RV) measurements of old (horizontal branch)
and intermediate-age (red clump) stellar tracers in the Carina dwarf
spheroidal. They are based on more than 2,200 low-resolution spectra collected
with VIMOS at VLT. The targets are faint (20<V<21.5 mag), but the accuracy at
the faintest limit is <9 kms-1. These data were complemented with RV
measurements either based on spectra collected with FORS2 and FLAMES/GIRAFFE at
VLT or available in the literature. We ended up with a sample of 2748 stars and
among them 1389 are candidate Carina stars. We found that the intermediate-age
stellar component shows a well defined rotational pattern around the minor
axis. The western and the eastern side of the galaxy differ by +5 and -4 km s-1
when compared with the main RV peak. The old stellar component is characterized
by a larger RV dispersion and does not show evidence of RV pattern. We compared
the observed RV distribution with N-body simulations for a former disky dwarf
galaxy orbiting a giant MilkyWay-like galaxy (Lokas et al. 2015). We rotated
the simulated galaxy by 60 degrees with respect to the major axis, we kept the
observer on orbital plane of the dwarf and extracted a sample of stars similar
to the observed one. Observed and predicted Vrot/{\sigma} ratios across the
central regions are in remarkable agreement. This evidence indicates that
Carina was a disky dwarf galaxy that experienced several strong tidal
interactions with the Milky Way. Owing to these interactions, Carina
transformed from a disky to a prolate spheroid and the rotational velocity
transformed into random motions.Comment: 21 pages, 16 figures, 4 tables. Accepted for publication in Ap
- …