38 research outputs found

    O papel dos glicosaminoglicanos no processo de descondensação cromatínica do espermatozoide humano

    Get PDF
    En el núcleo del espermatozoide, la cromatina se encuentra 6 a 8 veces más condensada que en los núcleos de las células somáticas. esta condensación es el resultado del intercambio de histonas por protaminas durante el proceso de formación de los espermatozoides, otorgando al material genético una resistencia única al ataque por especies reactivas de oxígeno como también al estrés que significa el trayecto hasta su encuentro con el ovocito en el oviducto. Esta condensación tan alta debe ser relajada, una vez producida la fecundación del ovocito, para permitir la formación del pronúcleo masculino y la posterior singamia. Para que ocurra la descondensación es necesaria la reducción de los puentes S-S de las protaminas, reacción que lleva a cabo el glutatión y, además, la remoción de las protaminas con intercambio posterior o concomitante por las histonas ovocitarias. En este punto, todavía no hay consenso sobre la molécula involucrada. En nuestro laboratorio postulamos que sería el heparán sulfato, basados en análisis de descondensación in vitro, en las características estructurales de la molécula y en su presencia en el ovocito murino, con evidencias preliminares de su presencia también en el ovocito humano (datos no mostrados)In the sperm nucleus, chromatin is 6 to 8 times more condensed than in the nuclei of somatic cells. This high condensation is the result of the exchange between histones and protamines during the process of spermatogenesis, and provides the genetic material with unique resistance to the attack of reactive oxygen species, as well as to the stress of the voyage towards the encounter with the oocyte in the oviduct. This high condensation must be relaxed, once the fertilization of the oocyte has taken place, in order to allow for the formation of male pronucleus and subsequent syngamy. For the decondensation to occur, it is necessary to reduce the disulfide bonds in the protamines, reaction that takes place with the assistance of glutathione, and also to remove the pro-tamines with the subsequent or concomitant exchange with oocyte histones. At this point, there is no consensus regarding the molecule involved in this process. In these studies, it has been postulated that this molecule is heparan sulfate, based on in vitro decondensation studies, on the structural characteristics of the molecule and the fact that it is present in the murine oocyte, with preliminary evidence of its presence also in the human oocyte (data not shown).Fil: Romanato, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Julianelli, Vanina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Farrando, Bárbara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Calvo, Lucrecia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Calvo, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentin

    Heterogeneous distribution of histone methylation in mature human sperm

    Get PDF
    Purpose To analyze the presence of various histone modifications in ejaculated human spermatozoa Methods In this prospective study, seminal ejaculates from 39 normozoospermic individuals were evaluated for semen analysis and the presence of histone modifications in isolated nuclei. Results We observed heterogeneous presence of histone methylation in normal mature human sperm. We observed that 12 to 30 % of the nuclei of normal sperm contain a heterogeneous distribution of the marks H3K4Me1, H3K9Me2, H3K4Me3, H3K79Me2, and H3K36Me3. Moreover, the presence of these marks is higher in the poor motile fraction of the ejaculate, which is associated with poor morphology and functional quality. In contrast, we did not observe histone acetylation (H3K4Ac and H4K5Ac) in normal or abnormal mature human sperm Conclusions Defects in the process of spermatogenesis may alter the correct epigenetic programing in mature sperm. Further studies are required to evaluate the impact of these findings in human infertilityFil: la Spina, Florenza Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Romanato, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Brugo Olmedo, Santiago. Centro Médico Seremas; ArgentinaFil: de Vicentiis, Sabrina. Centro Médico Seremas; ArgentinaFil: Julianelli, Vanina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Rivera, Rocío M.. University Of Missouri; Estados UnidosFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentin

    In vitro effects of endosulfan-based insecticides on mammalian sperm

    Get PDF
    Endosulfan is an organochloride insecticide extensively used in several countries to protect crops from pests. As several studies indicate that endosulfan can affect human and animal development, the aim of this study was to analyse whether sperm parameters and the process of chromatin decondensation could be altered by endosulfan in mice sperm. Spermatozoa from cauda epididymis were obtained from mature male mice and incubated in the presence of two commercial formulations (CFs) of endosulfan (Master® and Zebra Ciagro®) or the active ingredient (AI) alone. A significant decrease in the percentage motility and viability of spermatozoa with respect to controls was found. In vitro decondensation was performed in the presence of glutathione and heparin. Spermatozoa incubated with the AI, endosulfan Master® and endosulfan Zebra Ciagro® showed an increase in chromatin decondensation. In addition, the TUNEL assay showed that DNA fragmentation was significantly higher when sperm were incubated with either one of the CFs when compared to the AI or controls. The ultrastructure analysis of sperm cells showed evident changes in the structure of the plasma and acrosome membranes of sperm incubated with endosulfan AI or the CFs. These results suggest that endosulfan can affect sperm integrity and in vitro chromatin decondensation as well as DNA fragmentation.Fil: Sánchez, M.C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Alvarez Sedó, C.. Centro de estudios en Genética y Reproducción; ArmeniaFil: Chaufan, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Laboratorio de Enzimología, Estrés Oxidativo y Metabolismo; ArgentinaFil: Romanato, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Da Cuña, Rodrigo Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental. Laboratorio de Ecotoxicología Acuática; ArgentinaFil: Lo Nostro, Fabiana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental. Laboratorio de Ecotoxicología Acuática; ArgentinaFil: Calvo, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Quimica Biologica. Laboratorio de Química de Proteoglicanos y Matriz Extracelular; ArgentinaFil: Fontana, Vanina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Quimica Biologica. Laboratorio de Química de Proteoglicanos y Matriz Extracelular; Argentin

    El núcleo espermático y el proceso de descondensación cromatínica

    No full text
    La función de la gameta masculina en el proceso de fertilización no culmina con la penetración al ooplasma, sino que requiere además la fusión de su material genético con el material genético del oocito. Para lograrlo, el núcleo del espermatozoide, una vez ingresado al oocito, sufre una serie de cambios ultraestructurales que culminan con su transformación en el pronúcleo masculino.Fil: Romanato, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    Role of heparan sulfate in the process of human sperm chromatin decondensation

    No full text
    Nuestro laboratorio estudia la descondensación nuclear del espermatozoide humano in vitro, intentando ahondar en la comprensión de las etapas del proceso y las moléculas involucradas en el mismo. La descondensación requiere la reducción de puentes disulfuro en las protaminas y la remoción de las mismas para ser reemplazadas por histonas ovocitarias. Los espermatozoides humanos pueden descondensarse in vitro con heparina y glutatión. Observamos en estudios previos que el heparán sulfato (HS), análogo estructural de la heparina, pero no así otros glicosaminoglicanos, presenta actividad descondensante in vitro similar a la heparina y propusimos que HS actuaría in vivo como aceptor de protaminas. El presente trabajo tuvo como objetivos (1) acercarse a las condiciones in vivo analizando el comportamiento de núcleos aislados frente a la descondensación con heparina y glutatión in vitro y (2) demostrar que HS está presente en el ovocito y podría funcionar como agente descondensante. Se utilizaron espermatozoides de donantes normospérmicos (OMS) y ovocitos de ratón. Los núcleos espermáticos aislados descondensaron con glutatión y heparán sulfato o heparina pero no con otros glicosaminoglicanos. El análisis por microscopía confocal reveló localización de HS en el citoplasma y el espacio perivitelino del ovocito. La utilización de enzimas específicas indicó que la capacidad descondensante del ovocito podía atribuirse a la presencia de HS. Estas son las primeras evidencias de la presencia de HS en el ovocito y de su posible rol como aceptor de protaminas durante la descondensación del espermatozoide humano in vivo.Our laboratory studies human sperm nuclear decondensation in vitro, in an attempt to further understand the different stages of the process and the molecules involved in it. Decondensation requires protamine disulfide bond reduction followed by protamine removal to allow replacement by oocyte histones. Human spermatozoa can be decondensed in vitro with heparin and glutathione. In previous studies we showed that heparan sulfate (HS), structural analogue of heparin, but not other glycosaminoglycans, has a similar decondensing ability in vitro and we proposed that HS could function as protamine acceptor in vivo. The aims of the present study were (1) to approach in vivo conditions analyzing the decondensation of isolated sperm nuclei in vitro with heparin/HS and glutathione and (2) to demonstrate that HS is present in the oocyte and could thus function as decondensing agent in vivo. Spermatozoa obtained from normozoospermic (OMS) donors and mouse oocytes were used. Isolated sperm nuclei decondensed in vitro with HS or heparin but not with other glycosaminoglycans. Confocal microscopy revealed that HS is present in the ooplasm and perivitelline space of the oocyte. The use of specific glycosidases showed that oocyte decondensing capacity in vitro could be attributed to HS. These results provide the first evidence on the presence of HS in the oocyte and its possible role as sperm protamine acceptor during human sperm decondensation in vivo.Fil:Romanato, Marina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Lattice parameter of si1-x-ygexcy alloys

    No full text
    The introduction of carbon into silicon-germanium-based heterostructures offers increased flexibility in tailoring their strain state and electronic properties. Still, however, fundamental physical properties such as the lattice parameter and the elastic properties of Si1-x-yGexCy random alloys are not precisely known. In this paper, we present a quantitative study of the effect of carbon on the lattice parameter of Si1-x-yGexCy alloys in the technologically relevant range of Ge and C compositions. A strong deviation from Vegard's rule is experimentally and theoretically derived. The influence of the correlation between Ge and C on the lattice parameter is discussed. The results allow us to establish the compensation ratio ν of Ge to C concentrations (where the Si1-x-yGexCy epilayer is lattice matched to Si), for which we find a value of ν = 1

    The presence of heparan sulfate in the mammalian oocyte provides a clue to human sperm nuclear decondensation in vivo

    No full text
    BACKGROUND: Previous results from our laboratory have led us to propose heparan sulfate (HS) as a putative protamine acceptor during human sperm decondensation in vivo. The aim of this paper was to investigate the presence of glycosaminoglycans in the mammalian oocyte in an effort to better support this contention. METHODS: Two experimental approaches are used: oocyte labeling to identify the presence of HS and analysis of sperm decondensing ability of fresh oocytes in the presence or absence of specific glycosidases. RESULTS: Staining of mouse zona-intact oocytes with the fluorescent cationic dye, Rubipy, at pH 1.5 allowed for the detection of sulfate residues in the ooplasm by confocal microscopy. HS was detected in the ooplasm by immunocytochemistry. A sperm decondensation microassay using heparin and glutathione was successfully developed. The same level of sperm decondensation could be attained when heparin was replaced by mouse zona-free oocytes. Addition of heparinase to the oocyte/glutathione mixture significantly reduced sperm decondensation (P = 0.0159), while there was no effect following addition of either chondroitinase ABC or hyaluronidase. CONCLUSIONS: The results presented in this paper demonstrate for the first time that HS is present in the mammalian oocyte and show that HS is necessary for fresh oocytes to express their sperm decondensing ability in vitro. © The Author 2008. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.Fil: Romanato, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Julianelli, Vanina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Zappi, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Piñeiro, Lucrecia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Calvo, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    Electron and ion-beam analysis of composition and strain in Si1-xGex Si heterostructures

    No full text
    Si1-xGex heterostructures have been grown by molecular beam epitaxy, with nominal compositions of 10 and 15 at %. Analytical electron microscopy, Rutherford backscattering spectrometry and ion channeling have been used in order to determine film thickness, Ge molar fraction and tetragonal distortion. The actual Ge concentrations were found to be smaller than the nominal ones. For all the SiGe films a coherent growth was found, with a small deviation from the perfect tetragonal distortion. The good agreement found between the results obtained by each analytical technique demonstrate that these methods of characterization are powerful tools for the control of the epitaxial layer parameters

    146 Heparan sulfate is involved in nuclear sperm decondensation after fertilization in bovine

    No full text
    Reduced glutathione (GSH) is an endogenous disulfide bond reducer present in mammalian oocytes. It plays a critical role in sperm decondensation following fertilization, disrupting the protamine bonds that sustain the hypercondensed state of sperm DNA. However, disulfide bond reduction needs to be followed by protamine removal to achieve male pronuclear formation. In humans, heparan sulfate (HS) has been shown to exert this role (Romanato et al. 2008 Hum. Reprod. 23, 1145-1450). Although there are no reports in bovine, we recently demonstrated the presence of HS in cow oocytes by indirect immunofluorescence, using a specific anti-HS monoclonal antibody (Canel et al. 2015, Proc. SSR 48th Annual Meeting). Heparinases are known to cleave HS chains selectively, leading to its depolymerization. In the present work, we analysed the possible role of HS as protamine acceptor after fertilization in cattle. To this aim, we directly injected heparinase into the cytoplasm of IVF presumptive zygotes, and analysed its effect on pronuclei formation. Cumulus-oocyte complexes were collected from slaughtered cow ovaries and matured in vitro under standard conditions (Canel et al. 2012 Cell. Div. 7, 23-33). After 21h, IVF was performed following Brackett and Oliphant´s protocol (1975 Biol. Reprod. 12, 260-274), using frozen-thawed semen from 1 or 2 bulls at a final concentration of 15×106 spermatozoa/mL (5 replicates). After 5h of incubation, cumulus cells and sperm bound to zona pellucidae were removed from presumptive zygotes. Heparinase III solution (H8891, Sigma, St. Louis, MO, USA) was diluted in 50% (vol/vol) polyvinylpyrrolidone solution in PBS-(polyvinylpyrrolidone) at a final concentration of 50 UmL-1 and ~30 pL was mechanically injected into the cytoplasm of each IVF presumptive zygote (Hep group) using a 9-μm inner diameter injection pipette. A group of zygotes was injected with the same volume of 10% polyvinylpyrrolidone (sham), whereas others were not subjected to injection (control). All zygotes were cultured for 16h from the beginning of IVF in SOF medium (Holm et al. 1999 Theriogenology 52, 693-700). For pronuclear formation assessment, presumptive zygotes were permeabilized with 0.2% Triton X-100 for 15min at room temperature, and their DNA content was stained with 5µgmL-1 propidium iodide and observed under an epifluorescence microscope. Zygotes showing 2 pronuclei (PN) were considered as synchronically fertilized, whereas those showing one PN and one condensed sperm head were considered as asynchronically fertilized. Data were analysed by Fisher´s exact test (P<0.05). The rate of IVF zygotes showing 2 PN was lower for the Hep group (60.3%, n=131) than those from sham (94.1%, n=119) and control groups (98%, n=101), which did not differ between them (P<0.05). In conclusion, our results show for the first time that HS is involved in bull chromatin sperm decondensation and allow us to propose HS as a putative protamine acceptor during male pronucleus formation after IVF in cattle. Given the high frequency of sperm decondensation failure observed in bovine after intracytoplasmic sperm injection, this work provides new insights for the development of novel sperm/egg treatments that might improve intracytoplasmic sperm injection outcomes in cattle.Fil: Canel, Natalia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Pque. Centenario. Unidad Ejecutora de Investigaciones En Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones En Producción Animal; ArgentinaFil: Romanato, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Suvá, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Pque. Centenario. Unidad Ejecutora de Investigaciones En Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones En Producción Animal; ArgentinaFil: Calvo, L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Salamone, Daniel Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Pque. Centenario. Unidad Ejecutora de Investigaciones En Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones En Producción Animal; ArgentinaFil: Calvo, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    Heparin enhances protamine disulfide bond reduction during in vitro decondensation of human spermatozoa

    Get PDF
    BACKGROUND: Human sperm nuclear decondensation in vivo involves protamine disulfide bond reduction by glutathione (GSH) and protamine/histone exchange, presumably with heparan sulfate (HS) as the protamine acceptor. The aim of the present study was to test the hypothesis that these two events occur simultaneously rather than sequentially, as has been hitherto accepted, and to test for the presence of HS in the human oocyte. METHODS: Spermatozoa and isolated sperm nuclei obtained from normal volunteers were exposed in vitro to heparin, the functional analogue of HS and either GSH or dithiothreitol (DTT) as the disulfide reducing agent. Decondensing reagents were added either simultaneously or sequentially. Percentage sperm nuclear decondensation was assayed by phase contrast microscopy. Thiol reduced status of isolated sperm nuclei was evaluated both indirectly [acridine orange (AO) staining of acid-denatured DNA] and directly [monobromobimane (mBBr) staining of protamine-free thiols]. The presence of HS in mature metaphase II (MII) human oocytes was analyzed by immunocytochemistry. RESULTS: Sequential addition of reagents always resulted in significantly lower decondensation if GSH was used as the disulfide bond reducer (P < 0.05 for sperm and P < 0.001 for nuclei), but only when heparin was used first, when DTT was the disulfide reducing agent (P < 0.05 for sperm and P < 0.01 for nuclei). Both AO staining of DNA and mBBr staining of protamines revealed that the addition of heparin to GSH but not to DTT significantly increased the thiol reduced status of sperm chromatin. HS was detected in the ooplasm of zona-free MII human oocytes. CONCLUSIONS: The results presented in this paper clearly show that heparin enhances the sperm chromatin thiol reducing activity of GSH in vitro, suggesting that in vivo thiol reduction and protamine/histone exchange could occur as simultaneous, rather than sequential, events. We also demonstrate for the first time the presence of HS in the human oocyte.Fil: Julianelli, Vanina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Farrando, Bárbara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Alvarez Sedó, C.. CEGYR Medicina Reproductiva; ArgentinaFil: Piñeiro, Lucrecia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Romanato, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Calvo, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin
    corecore