4 research outputs found

    Dissociation rates of J/psi's with comoving mesons - thermal vs. nonequilibrium scenario

    Get PDF
    We study J/psi dissociation processes in hadronic environments. The validity of a thermal meson gas ansatz is tested by confronting it with an alternative, nonequilibrium scenario. Heavy ion collisions are simulated in the framework of the microscopic transport model UrQMD, taking into account the production of charmonium states through hard parton-parton interactions and subsequent rescattering with hadrons. The thermal gas and microscopic transport scenarios are shown to be very dissimilar. Estimates of J/psi survival probabilities based on thermal models of comover interactions in heavy ion collisions are therefore not reliable.Comment: 12 pages, 6 figure

    Strange Messages: Chemical and Thermal Freeze-out in Nuclear Collisions

    Get PDF
    Thermal models are commonly used to interpret heavy-ion data on particle yields and spectra and to extract the conditions of chemical and thermal freeze-out in heavy-ion collisions. I discuss the usefulness and limitations of such thermal model analyses and review the experimental and theoretical evidence for thermalization in nuclear collisions. The crucial role of correlating strangeness production data with single particle spectra and two-particle correlation measurements is pointed out. A consistent dynamical picture for the heavy-ion data from the CERN SPS involves an initial prehadronic stage with deconfined color and with an appreciable isotropic pressure component. This requires an early onset of thermalization.Comment: 15 pages, 2 figures, talk given at Strange Quark Matter '98, Padova, Italy, 20-24 July 1998, to be published in J. Phys. G 25; final version with updated reference

    Signatures of Quark-Gluon-Plasma formation in high energy heavy-ion collisions: A critical review

    Full text link
    A critical review on signatures of Quark-Gluon-Plasma formation is given and the current (1998) experimental status is discussed. After giving an introduction to the properties of QCD matter in both, equilibrium- and non-equilibrium theories, we focus on observables which may yield experimental evidence for QGP formation. For each individual observable the discussion is divided into three sections: first the connection between the respective observable and QGP formation in terms of the underlying theoretical concepts is given, then the relevant experimental results are reviewed and finally the current status concerning the interpretation of both, theory and experiment, is discussed. A comprehensive summary including an outlook towards RHIC is given in the final section.Comment: Topical review, submitted to Journal of Physics G: 68 pages, including 39 figures (revised version: only minor modifications, some references added
    corecore