31 research outputs found

    Radio Detection of High Energy Particles: Coherence Versus Multiple Scales

    Get PDF
    Radio Cherenkov emission underlines detection of high energy particles via a signal growing like the particle-energy-squared. Cosmic ray-induced electromagnetic showers are a primary application. While many studies have treated the phenomenon approximately, none have attempted to incorporate all the physical scales involved in problems with time- or spatially- evolving charges. We find it is possible to decompose the calculated fields into the product of a form factor, characterizing a moving charge distribution, multiplying a general integral which depends on the charge evolution. In circumstances of interest for cosmic ray physics, the resulting expressions can be evaluated explicitely in terms of a few parameters obtainable from shower codes. The classic issues of Frauhofer and Fresnel zones play a crucial role in the coherence.Comment: 25 pages, 10 figure

    Open and Closed Universes, Initial Singularities and Inflation

    Full text link
    The existence of initial singularities in expanding universes is proved without assuming the timelike convergence condition. The assumptions made in the proof are ones likely to hold both in open universes and in many closed ones. (It is further argued that at least some of the expanding closed universes that do not obey a key assumption of the theorem will have initial singularities on other grounds.) The result is significant for two reasons: (a)~previous closed-universe singularity theorems have assumed the timelike convergence condition, and (b)~the timelike convergence condition is known to be violated in inflationary spacetimes. An immediate consequence of this theorem is that a recent result on initial singularities in open, future-eternal, inflating spacetimes may now be extended to include many closed universes. Also, as a fringe benefit, the time-reverse of the theorem may be applied to gravitational collapse.Comment: 27 pages, Plain TeX (figures are embedded in the file itself and they will emerge if it is processed according to the instructions at the top of the file

    Inflammatory Cell Infiltration of Adrenals in COVID-19

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was originated in November-December 2019 in Wuhan, China, and has rapidly spread around the world causing severe health and socioeconomical damage to the entire civilization. The key feature of coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is upper respiratory tract infection, which may be complicated by bilateral pneumonia. Angiotensin converting enzyme 2 (ACE2) has been identified as a key host factor, required for virus entry into cells. Interestingly, ACE2 is expressed not only in the respiratory system, but also in the other organs and systems including adrenal glands. Here we provide the first description of the pathomorphological changes in adrenal glands in patients with severe COVID-19 characterized by perivascular infiltration of CD3+ and CD8+ T-lymphocytes. Due to the central role of the adrenals in the stress response of the organism, this finding is of potential clinical relevance, because infection with the SARS-CoV-2 virus might critically impair adrenal function under pathophysiological conditions

    Determining the Deformed State in the Process of Rolling Conical Shells with A Flange

    Full text link
    Obtaining conical shells by forging is an important and relevant task in energy and heavy engineering. Existing processes of their manufacture come down to simplifying the configuration of such billets. The result is the increased material's consumption while the internal fiber is cut during machining, which also leads to a decrease in mechanical properties. A new forging technique necessitated a study into the shape change of the billet and the distribution of deformations in the process of rolling. A finite-element method was used to investigate the process of rolling out the step hollow billets. Based on the study results, the forging's taper was established, obtained during the forging process. A research procedure involving the finite-element method was devised to study the operation of conical shells' rolling, which made it possible to determine a change in the shape and size of a hollow forging when rolled out by a step tool. A parameter has been proposed to quantify the formation of taper in the process of rolling a billet with a flange. Based on the study results, a step-wise distribution of the intensity of logarithmic deformities in the body of a forging was established when conical shells were rolled out. It was found that the step deformation leads to an increase in the uneven distribution of deformations on the part of the protrusion and ledge. Maximum deformations of 1.0...1.2 occur at the inner and outer surfaces of the step billet's protrusion. Dependences of the shape change in a step billet for the investigated ratios of sizes and rolling modes have been established. It was found that the maximum taper is obtained at a deformation degree of 15 %. It was determined that the degree of compression in the ledge and protrusion is leveled after 3 deformation runs of the step bille

    Determining the Deformed State in the Process of Rolling Conical Shells with A Flange

    Full text link
    Obtaining conical shells by forging is an important and relevant task in energy and heavy engineering. Existing processes of their manufacture come down to simplifying the configuration of such billets. The result is the increased material's consumption while the internal fiber is cut during machining, which also leads to a decrease in mechanical properties. A new forging technique necessitated a study into the shape change of the billet and the distribution of deformations in the process of rolling. A finite-element method was used to investigate the process of rolling out the step hollow billets. Based on the study results, the forging's taper was established, obtained during the forging process. A research procedure involving the finite-element method was devised to study the operation of conical shells' rolling, which made it possible to determine a change in the shape and size of a hollow forging when rolled out by a step tool. A parameter has been proposed to quantify the formation of taper in the process of rolling a billet with a flange. Based on the study results, a step-wise distribution of the intensity of logarithmic deformities in the body of a forging was established when conical shells were rolled out. It was found that the step deformation leads to an increase in the uneven distribution of deformations on the part of the protrusion and ledge. Maximum deformations of 1.0...1.2 occur at the inner and outer surfaces of the step billet's protrusion. Dependences of the shape change in a step billet for the investigated ratios of sizes and rolling modes have been established. It was found that the maximum taper is obtained at a deformation degree of 15 %. It was determined that the degree of compression in the ledge and protrusion is leveled after 3 deformation runs of the step bille
    corecore