916 research outputs found

    Morphogenesis of post-Golgi transport carriers

    Get PDF
    The trans-Golgi network (TGN) is one of the main, if not the main, sorting stations in the process of intracellular protein trafficking. It is therefore of central importance to understand how the key players in the TGN-based sorting and delivery process, the post-Golgi carriers (PGCs), form and function. Over the last few years, modern morphological approaches have generated new insights into the questions of PGC biogenesis, structure and dynamics. Here, we present a view by which the “lifecycle” of a PGC consists of several distinct stages: the formation of TGN tubular export domains (where different cargoes are segregated from each other and from the Golgi enzymes); the docking of these tubular domains onto molecular motors and their extrusion towards the cell periphery along microtubules; the fission of the forming PGC from the donor membrane; and the delivery of the newly formed PGC to its specific acceptor organelle. It is now important to add the many molecular machineries that have been described as operating at the TGN to this “morphofunctional map” of the TGN export process

    Geometric Secluded Paths and Planar Satisfiability

    Get PDF
    We consider paths with low exposure to a 2D polygonal domain, i.e., paths which are seen as little as possible; we differentiate between integral exposure (when we care about how long the path sees every point of the domain) and 0/1 exposure (just counting whether a point is seen by the path or not). For the integral exposure, we give a PTAS for finding the minimum-exposure path between two given points in the domain; for the 0/1 version, we prove that in a simple polygon the shortest path has the minimum exposure, while in domains with holes the problem becomes NP-hard. We also highlight connections of the problem to minimum satisfiability and settle hardness of variants of planar min- and max-SAT

    Identification of CDC42 Effectors Operating in FGD1-Dependent Trafficking at the Golgi

    Get PDF
    Loss of function mutations in the FGD1 gene cause a rare X-linked disease, faciogenital dysplasia (FGDY, also known as Aarskog-Skott syndrome), which is associated with bone and urogenital abnormalities. The FGD1 gene encodes Ă  CDC42-specific guanine nucleotide exchange factor. The mutations are frequently located in the DH module of FGD1 preventing its transformation to the active form. We previously reported that Golgi-associated FGD1 regulates post-Golgi transport of some conventional and bone-specific proteins in a CDC42-dependent manner. However, the downstream targets of FGD1/CDC42 signaling that operate to support transport from the Golgi remain elusive. Here, we demonstrate that Golgi-localized CDC42 effectors might be involved in FGD1-mediated post-Golgi transport, probably through coordination of Golgi membrane and cytoskeleton dynamics. Overexpression of effector-specific CDC42 mutants (exhibiting preferential affinities for PAK1, IQGAP1, N-WASP, or PAR6) only partially rescue membrane trafficking in FGD1-deficient cells, indicating that the orchestrated activities of several downstream targets of CDC42 are required to support FGD1-mediated export from the Golgi. Our findings provide new insights into understanding the molecular mechanisms behind FGD1/CDC42-dependent transport events and uncover new targets whose potential might be explored for correction of membrane trafficking in FGDY

    AAV-mediated transcription factor EB (TFEB) gene delivery ameliorates muscle pathology and function in the murine model of Pompe Disease

    Get PDF
    Pompe disease (PD) is a metabolic myopathy due to acid alpha-glucosidase deficiency and characterized by extensive glycogen storage and impaired autophagy. We previously showed that modulation of autophagy and lysosomal exocytosis by overexpression of the transcription factor EB (TFEB) gene was effective in improving muscle pathology in PD mice injected intramuscularly with an AAV-TFEB vector. Here we have evaluated the effects of TFEB systemic delivery on muscle pathology and on functional performance, a primary measure of efficacy in a disorder like PD. We treated 1-month-old PD mice with an AAV2.9-MCK-TFEB vector. An animal cohort was analyzed at 3 months for muscle and heart pathology. A second cohort was followed at different timepoints for functional analysis. In muscles from TFEB-treated mice we observed reduced PAS staining and improved ultrastructure, with reduced number and increased translucency of lysosomes, while total glycogen content remained unchanged. We also observed statistically significant improvements in rotarod performance in treated animals compared to AAV2.9-MCK-eGFP-treated mice at 5 and 8 months. Cardiac echography showed significant reduction in left-ventricular diameters. These results show that TFEB overexpression and modulation of autophagy result in improvements of muscle pathology and of functional performance in the PD murine model, with delayed disease progression

    Dimeric PKD regulates membrane fission to form transport carriers at the TGN

    Get PDF
    Protein kinase D (PKD) is recruited to the trans-Golgi network (TGN) through interaction with diacylglycerol (DAG) and is required for the biogenesis of TGN to cell surface transport carriers. We now provide definitive evidence that PKD has a function in membrane fission. PKD depletion by siRNA inhibits trafficking from the TGN, whereas expression of a constitutively active PKD converts TGN into small vesicles. These findings demonstrate that PKD regulates membrane fission and this activity is used to control the size of transport carriers, and to prevent uncontrolled vesiculation of TGN during protein transport

    Abnormal cell-clearance and accumulation of autophagic vesicles in lymphocytes from patients affected with Ataxia-Teleangiectasia

    Get PDF
    Ataxia-Teleangiectasia (A-T) is a neurodegenerative disorder due to mutations in ATM gene. ATM in the nucleus ensures DNA repair, while its role in the cytosol is still poorly clarified. Abnormal autophagy has been documented in other neurodegenerative disorders, thus we evaluated whether alteration in this process may be involved in the pathogenesis of A-T by analyzing the autophagic vesicles and the genes implicated in the different stages of autophagy. Through transmission electron microscopy (TEM) and immunofluorescence analysis we observed an accumulation of APs associated with a LC3 puncta pattern, and a reduced number of ALs. We also documented an increased expression of genes involved in AP and lysosome biogenesis and function, and a decrease of Vps18 expression, involved in their vesicular trafficking and fusion. mTORC1-controlled proteins were hyperphosphorylated in A-T, in keeping with an increased mTOR inhibitory influence of autophagy. Betamethasone is able to promote the degradation of SQSTM1, a biomarker of autophagy. Collectively, our results indicate that in cells from A-T patients, the APs maturation is active, while the fusion between APs and lysosomes is inappropriate, thus implying abnormalities in the cell-clearance process. We also documented a positive effect of Betamethasone on molecules implicated in autophagosome degradation

    MODELE DYNAMICZNE I MATEMATYCZNE HYDRAULICZNEGO URZĄDZENIA IMPULSOWEGO DO CIĘCIA WIBRACYJNEGO Z GENERATOREM IMPULSÓW WBUDOWANYM W SPRĘƻYNĘ PIERƚCIENIOWĄ

    Get PDF
    Structural calculation scheme of the hydropulse device for vibration cutting with built-in ring with pressure pulse generator (PPG) is considered. On the basis of the structural scheme and cyclogram of the working cycle of the device, its dynamic and mathematical models were developed, in which the hydraulic link is represented by a visco-elastic model of the working fluid (energy carrier) composed of the inertial elastic and dissipative elements (Kelvin-Foyga's body).RozwaĆŒa się schemat konstrukcyjny i projektowy hydraulicznego urządzenia impulsowego do cięcia wibracyjnego z wbudowanym generatorem impulsĂłw ciƛnieniowych ze sprÄ™ĆŒyną pierƛcieniową (PPG). Na podstawie schematu strukturalnego i cyklu pracy urządzenia opracowano jego modele dynamiczne i matematyczne, w ktĂłrych ogniwo hydrauliczne reprezentowane jest przez lepkosprÄ™ĆŒysty model cieczy roboczej (noƛnika energii), zƂoĆŒony z bezwƂadnych elementĂłw sprÄ™ĆŒystych i dyssypacyjnych (ciaƂ Kelvina-Foiga)
    • 

    corecore