13,544 research outputs found

    Method and apparatus for attaching physiological monitoring electrodes Patent

    Get PDF
    Adhesive spray process for attaching biomedical skin electrode

    Calculation of model Hamiltonian parameters for LaMnO_3 using maximally localized Wannier functions

    Full text link
    Maximally localized Wannier functions (MLWFs) based on Kohn-Sham band-structures provide a systematic way to construct realistic, materials specific tight-binding models for further theoretical analysis. Here, we construct MLWFs for the Mn e_g bands in LaMnO_3, and we monitor changes in the MLWF matrix elements induced by different magnetic configurations and structural distortions. From this we obtain values for the local Jahn-Teller and Hund's rule coupling strength, the hopping amplitudes between all nearest and further neighbors, and the corresponding reduction due to the GdFeO_3-type distortion. By comparing our results with commonly used model Hamiltonians for manganites, where electrons can hop between two "e_g-like" orbitals located on each Mn site, we find that the most crucial limitation of such models stems from neglecting changes in the underlying Mn(d)-O(p) hybridization.Comment: 15 pages, 11 figures, 3 table

    Complementary optical-potential analysis of alpha-particle elastic scattering and induced reactions at low energies

    Full text link
    A previously derived semi-microscopic analysis based on the Double Folding Model, for alpha-particle elastic scattering on A~100 nuclei at energies below 32 MeV, is extended to medium mass A ~ 50-120 nuclei and energies from ~13 to 50 MeV. The energy-dependent phenomenological imaginary part for this semi-microscopic optical model potential was obtained including the dispersive correction to the microscopic real potential, and used within a concurrent phenomenological analysis of the same data basis. A regional parameter set for low-energy alpha-particles entirely based on elastic-scattering data analysis was also obtained for nuclei within the above-mentioned mass and energy ranges. Then, an ultimate assessment of (alpha,gamma), (alpha,n) and (alpha,p) reaction cross sections concerned target nuclei from 45Sc to 118Sn and incident energies below ~12 MeV. The former diffuseness of the real part of optical potential as well as the surface imaginary-potential depth have been found responsible for the actual difficulties in the description of these data, and modified in order to obtain an optical potential which describe equally well both the low energy elastic-scattering and induced-reaction data of alpha-particles.Comment: 46 pages, 16 figures. n_TOF Collaboration Annual Meeting, Bari, Italy, 28-30 November 2007 (http://www.cern.ch/ntof/Documents/bari_nov07/bari_slides.php); revised version accepted for publication in ADND

    A study of energy concentration and drain in incompressible fluids

    Full text link
    In this paper we examine two opposite scenarios of energy behavior for solutions of the Euler equation. We show that if uu is a regular solution on a time interval [0,T)[0,T) and if uLrLu \in L^rL^\infty for some r2N+1r\geq \frac{2}{N}+1, where NN is the dimension of the fluid, then the energy at the time TT cannot concentrate on a set of Hausdorff dimension samller than N2r1N - \frac{2}{r-1}. The same holds for solutions of the three-dimensional Navier-Stokes equation in the range 5/3<r<7/45/3<r<7/4. Oppositely, if the energy vanishes on a subregion of a fluid domain, it must vanish faster than (T-t)^{1-\d}, for any \d>0. The results are applied to find new exclusions of locally self-similar blow-up in cases not covered previously in the literature.Comment: an update of the previous versio

    Factor ordering in standard quantum cosmology

    Full text link
    The Wheeler-DeWitt equation of Friedmann models with a massless quantum field is formulated with arbitrary factor ordering of the Hamiltonian constraint operator. A scalar product of wave functions is constructed, giving rise to a probability interpretation and making comparison with the classical solution possible. In general the bahaviour of the wave function of the model depends on a critical energy of the matter field, which, in turn, depends on the chosen factor ordering. By certain choices of the ordering the critical energy can be pushed down to zero.Comment: 15 pages, 3 figure

    Phonon lasing from optical frequency comb illumination of a trapped ion

    Full text link
    An atomic transition can be addressed by a single tooth of an optical frequency comb if the excited state lifetime (τ\tau) is significantly longer than the pulse repetition period (TrT_\mathrm{r}). In the crossover regime between fully-resolved and unresolved comb teeth (τTr\tau \lessapprox T_\mathrm{r}), we observe Doppler cooling of a pre-cooled trapped atomic ion by a single tooth of a frequency-doubled optical frequency comb. We find that for initially hot ions, a multi-tooth effect gives rise to lasing of the ion's harmonic motion in the trap, verified by acoustic injection locking. The gain saturation of this phonon laser action leads to a comb of steady-state oscillation amplitudes, allowing hot ions to be loaded directly into the trap and laser cooled to crystallization despite the presence of hundreds of blue-detuned teeth.Comment: 5 pages, 4 figure

    Improving light harvesting in polymer photodetector devices through nanoindented metal mask films

    Get PDF
    To enhance light harvesting in organic photovoltaic devices, we propose the incorporation of a metal (aluminum) mask film in the system’s usual layout. We fabricate devices in a sandwich geometry, where the mask (nanoindented with a periodic array of holes of sizes d and spacing s) is added between the transparent electrode and the active layer formed by a blend of the semiconducting polymer P3HT and substituted fullerene. Its function is to promote trapping of the incident light into the device’s cavity (the region corresponding to the active layer). For d, we set a value that allows light diffraction through the holes in the relevant absorption range of the polymer. To optimize the mask structure, we consider a very simple model to determine the s leading to trapped fields that are relatively intense and homogeneous within the device. From measurements of the action spectra, we show that, indeed, such architecture can considerably improve the resulting photocurrent efficiencies—one order of magnitude in the best situation studied.

    Tomographic readout of an opto-mechanical interferometer

    Get PDF
    The quantum state of light changes its nature when being reflected off a mechanical oscillator due to the latter's susceptibility to radiation pressure. As a result, a coherent state can transform into a squeezed state and can get entangled with the motion of the oscillator. The complete tomographic reconstruction of the state of light requires the ability to readout arbitrary quadratures. Here we demonstrate such a readout by applying a balanced homodyne detector to an interferometric position measurement of a thermally excited high-Q silicon nitride membrane in a Michelson-Sagnac interferometer. A readout noise of \unit{1.9 \cdot 10^{-16}}{\metre/\sqrt{\hertz}} around the membrane's fundamental oscillation mode at \unit{133}{\kilo\hertz} has been achieved, going below the peak value of the standard quantum limit by a factor of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a rather broad frequency range around the mechanical resonance.Comment: 7 pages, 5 figure
    corecore