59 research outputs found

    Archeomagnetic dating of an Iron age pottery kiln from Northeast Iraq

    Get PDF

    Experimental characterization of Gaussian quantum communication channels

    Full text link
    We present a full experimental characterization of continuous variable quantum communication channels established by shared entanglement together with local operations and classical communication. The resulting teleportation channel was fully characterized by measuring all elements of the covariance matrix of the shared two-mode squeezed Gaussian state. From the experimental data we determined the lower bound to the quantum channel capacity, the teleportation fidelity of coherent states and the logarithmic negativity and the purity of the shared state. Additionally, a positive secret key rate was obtained for two of the established channels.Comment: 9 pages, 4 figures, submitted to Physical Review

    Experimental characterization of frequency dependent squeezed light

    Full text link
    We report on the demonstration of broadband squeezed laser beams that show a frequency dependent orientation of the squeezing ellipse. Carrier frequency as well as quadrature angle were stably locked to a reference laser beam at 1064nm. This frequency dependent squeezing was characterized in terms of noise power spectra and contour plots of Wigner functions. The later were measured by quantum state tomography. Our tomograph allowed a stable lock to a local oscillator beam for arbitrary quadrature angles with one degree precision. Frequency dependent orientations of the squeezing ellipse are necessary for squeezed states of light to provide a broadband sensitivity improvement in third generation gravitational wave interferometers. We consider the application of our system to long baseline interferometers such as a future squeezed light upgraded GEO600 detector.Comment: 8 pages, 8 figure

    Modelling geomagnetically induced currents in midlatitude Central Europe using a thin-sheet approach

    Get PDF
    Geomagnetically induced currents (GICs) in power systems, which can lead to transformer damage over the short and the long term, are a result of space weather events and geomagnetic variations. For a long time, only high-latitude areas were considered to be at risk from these currents, but recent studies show that considerable GICs also appear in midlatitude and equatorial countries. In this paper, we present initial results from a GIC model using a thin-sheet approach with detailed surface and subsurface conductivity models to compute the induced geoelectric field. The results are compared to measurements of direct currents in a transformer neutral and show very good agreement for short-period variations such as geomagnetic storms. Long-period signals such as quiet-day diurnal variations are not represented accurately, and we examine the cause of this misfit. The modelling of GICs from regionally varying geoelectric fields is discussed and shown to be an important factor contributing to overall model accuracy. We demonstrate that the Austrian power grid is susceptible to large GICs in the range of tens of amperes, particularly from strong geomagnetic variations in the east–west direction

    Spin and magnetization effects in plasmas

    Full text link
    We give a short review of a number of different models for treating magnetization effects in plasmas. In particular, the transition between kinetic models and fluid models is discussed. We also give examples of applications of such theories. Some future aspects are discussed.Comment: 18 pages, 1 figure. To appear in Plasma Physics and Controlled Fusion, Special Issue for the 37th ICPP, Santiago, Chil

    Quantum-Dense Metrology

    Full text link
    Quantum metrology utilizes entanglement for improving the sensitivity of measurements. Up to now the focus has been on the measurement of just one out of two non-commuting observables. Here we demonstrate a laser interferometer that provides information about two non-commuting observables, with uncertainties below that of the meter's quantum ground state. Our experiment is a proof-of-principle of quantum dense metrology, and uses the additional information to distinguish between the actual phase signal and a parasitic signal due to scattered and frequency shifted photons. Our approach can be readily applied to improve squeezed-light enhanced gravitational-wave detectors at non-quantum noise limited detection frequencies in terms of a sub shot-noise veto-channel.Comment: 5 pages, 3 figures; includes supplementary material
    • …
    corecore