38 research outputs found

    Lung tumour growth kinetics in SPC-c-Raf-1-BB transgenic mice assessed by longitudinal in-vivo micro-CT quantification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SPC-c-Raf-1-BxB transgenic mice develop genetically induced disseminated lung adenocarcinoma allowing examination of carcinogenesis and evaluation of novel treatment strategies. We report on assessment of lung tumour growth kinetics using a semiautomated region growing segmentation algorithm.</p> <p>Methods</p> <p>156 non contrast-enhanced respiratory gated micro-CT of the lungs were obtained in 12 SPC-raf transgenic (n = 9) and normal (n = 3) mice at different time points. Region-growing segmentation of the aerated lung areas was obtained as an inverse surrogate for tumour burden. Time course of segmentation volumes was assessed to demonstrate the potential of the method for follow-up studies.</p> <p>Results</p> <p>Micro-CT allowed assessment of tumour growth kinetics and semiautomated region growing enabled quantitative analysis. Significant changes of the segmented lung volumes over time could be shown (<it>p </it>= 0.009). Significant group differences could be detected between transgenic and normal animals for time points 8 to 13 months (<it>p </it>= 0.043), when marked tumour progression occurred.</p> <p>Conclusion</p> <p>The presented region-growing segmentation algorithm allows in-vivo quantification of multifocal lung adenocarcinoma in SPC-raf transgenic mice. This enables the assessment of tumour load and progress for the study of carcinogenesis and the evaluation of novel treatment strategies.</p

    PET/CT Imaging of c-Myc Transgenic Mice Identifies the Genotoxic N-Nitroso-Diethylamine as Carcinogen in a Short-Term Cancer Bioassay

    Get PDF
    Background: More than 100,000 chemicals are in use but have not been tested for their safety. To overcome limitations in the cancer bioassay several alternative testing strategies are explored. The inability to monitor non-invasively onset and progression of disease limits, however, the value of current testing strategies. Here, we report the application of in vivo imaging to a c-Myc transgenic mouse model of liver cancer for the development of a short-term cancer bioassay. Methodology/Principal Findings: mCT and 18 F-FDG mPET were used to detect and quantify tumor lesions after treatment with the genotoxic carcinogen NDEA, the tumor promoting agent BHT or the hepatotoxin paracetamol. Tumor growth was investigated between the ages of 4 to 8.5 months and contrast-enhanced mCT imaging detected liver lesions as well as metastatic spread with high sensitivity and accuracy as confirmed by histopathology. Significant differences in the onset of tumor growth, tumor load and glucose metabolism were observed when the NDEA treatment group was compared with any of the other treatment groups. NDEA treatment of c-Myc transgenic mice significantly accelerated tumor growth and caused metastatic spread of HCC in to lung but this treatment also induced primary lung cancer growth. In contrast, BHT and paracetamol did not promote hepatocarcinogenesis. Conclusions/Significance: The present study evidences the accuracy of in vivo imaging in defining tumor growth, tumor load, lesion number and metastatic spread. Consequently, the application of in vivo imaging techniques to transgeni

    Combination of Multiple Handwritten Text Line Recognition Systems with a Recursive Approach

    Get PDF
    http://www.suvisoft.comIn this paper we propose a novel method to combine the results of multiple text line recognition systems. The method uses a recursive approach and re-examines those parts in a text line which have been rejected based on the initial combination of the base recognisers' results. By means of the new method, the search space can be reduced, and therefore more accurate recognition results can be expected. Experiments conducted on the IAM database show that the proposed method is able to improve the recognition rate compared to a standard combination scheme

    Combination of Multiple Handwritten Text Line Recognition Systems with a Recursive Approach

    No full text
    In this paper we propose a novel method to combine the results of multiple text line recognition systems. The method uses a recursive approach and re-examines those parts in a text line which have been rejected based on the initial combination of the base recognisers ’ results. By means of the new method, the search space can be reduced, and therefore more accurate recognition results can be expected. Experiments conducted on the IAM database show that the proposed method is able to improve the recognition rate compared to a standard combination scheme

    Generation and characterization of transgenic mice expressing cobra venom factor

    No full text
    Cobra venom factor (CVF), the anticomplementary protein in cobra venom, activates the alternative complement pathway, eventually leading to complement consumption. Here, we describe the development of a transgenic mouse model for CVF. We generated a DNA construct containing the full-length cDNA for single-chain pre-pro-CVF. Expression of CVF was controlled by the alpha(1)-antitrypsin promoter to achieve liver-specific expression. Linearized DNA was microinjected into murine ovary cells (strain CD(2)F(1)(BALB/cxDBA/2J)) and the newborn mice were analyzed for stable integration of CVF DNA. After establishing the transgene, mice were propagated in a BALB/c background. The CVF mRNA was detected in the liver and, in some animals, in the kidney. CVF protein was detected in small amounts in the serum. Serum complement hemolytic activity in CVF-transgenic mice was virtually absent. The concentration of plasma C3 was significantly reduced. The CVF-transgenic animals show no unusual phenotype. They provide an animal model to study the effect of long-term complement depletion by continued activation, as well as the role of complement in host immune response and pathogenesis of disease

    Combined micro-PET/micro-CT imaging of lung tumours in SPC-raf and SPC-myc transgenic mice.

    Get PDF
    INTRODUCTION: SPC-raf and SPC-myc transgenic mice develop disseminated and circumscribed lung adenocarcinoma respectively, allowing for assessment of carcinogenesis and treatment strategies. The purpose of this study was to investigate the technical feasibility, the correlation of initial findings to histology and the administered radiation dose of combined micro-PET/micro-CT in these animal models. MATERIAL AND METHODS: 14 C57BL/6 mice (4 nontransgenic, 4 SPC-raf transgenic, 6 SPC-myc transgenic) were examined using micro-CT and (18)F-Fluoro-deoxyglucose micro-PET in-vivo. Micro-PET data was corrected for random events and scatter prior to reconstruction with a 3D-FORE/2D-OSEM iterative algorithm. Rigid micro-PET/micro-CT registration was performed. Tumour-to-non-tumour ratios were calculated for different lung regions and focal lesions. Diffuse tumour growth was quantified using a semiautomated micro-CT segmentation routine reported earlier. Regional histologic tumour load was assessed using a 4-point rating scale. Gamma radiation dose was determined using thermoluminescence dosimeters. RESULTS: Micro-CT allowed visualisation of diffuse and circumscribed tumours in SPC-raf and SPC-myc transgenic animals along with morphology, while micro-PET provided information on metabolism, but lacked morphologic detail. Mean tumour-to-non-tumour ratio was 2.47 for circumscribed lesions. No significant correlation could be shown between histological tumour load and tumour-to-nontumour ratio for diffuse tumours in SPC-raf transgenic animals. Calculation of the expected dose based on gamma dosimetry yielded approximately 140 mGy/micro-PET examination additional to approximately 200 mGy due to micro-CT. CONCLUSIONS: Combined micro-PET/micro-CT imaging allows for in-vivo assessment of lung tumours in SPC-raf and SPC-myc transgenic mice. The technique has potential for the evaluation of carcinogenesis and treatment strategies in circumscribed lung tumours
    corecore