52 research outputs found

    Optimizing laboratory cultures of Gammarus fossarum (Crustacea: Amphipoda) as a study organism in environmental sciences and ecotoxicology

    Get PDF
    Amphipods are among the most abundant macroinvertebrates in freshwater ecosystems of the Palaearctic and crucial for ecosystem functioning. Furthermore, their high sensitivity to environmental change and pollutants makes them widely used model organisms in environmental sciences and ecotoxicology. In field studies and surveys across Eurasia, species of the genus Gammarus are commonly used, yet laboratory-based studies and ecotoxicological tests are often restricted to the in most parts of the world non-native Hyalella azteca, as Gammarus is much harder to breed and maintain under laboratory conditions. However, for direct comparisons and extrapolations of results of field- vs. laboratory-based studies, the use of the same species would be desirable. Here, we investigated different settings with respect to feeding, shelter and day length to successfully increase survival, juvenile production and their respective growth and survival, and ultimately multi-generation breeding of the amphipod Gammarus fossarum. Amphipod populations persisted and reproduced successfully under optimized husbandry conditions for 12 months and were partially maintained for another year in populations up to a few hundred individuals. Specifically, supplementing diet with protein-rich food sources as well as the provisioning of shelters improved survival rate of G. fossarum significantly. However, we found no significant effect of different day length treatments on the overall relative reproductive activity or on the total amphipod abundance maintained. We conclude that G. fossarum can be kept and reared under standardized conditions. Despite the longer generation times of G. fossarum and higher effort required for maintenance compared to H. azteca, direct ecological relevance and comparability of results to natural systems may justify its future use and development as a study organism for environmental sciences and ecotoxicology

    Groundwater environmental DNA metabarcoding reveals hidden diversity and reflects land‐use and geology

    Get PDF
    Despite being the most important source of liquid freshwater on the planet, groundwater is severely threatened by climate change, agriculture, or industrial mining. It is thus extensively monitored for pollutants and declines in quantity. The organisms living in groundwater, however, are rarely the target of surveillance programmes and little is known about the fauna inhabiting underground habitats. The difficulties accessing groundwater, the lack of expertise, and the apparent scarcity of these organisms challenge sampling and prohibit adequate knowledge on groundwater fauna. Environmental DNA (eDNA) metabarcoding provides an approach to overcome these limitations but is largely unexplored. Here, we sampled water in 20 communal spring catchment boxes used for drinking water provisioning in Switzerland, with a high level of replication at both filtration and amplification steps. We sequenced a portion of the COI mitochondrial gene, which resulted in 4917 ASVs, yet only 3% of the reads could be assigned to a species, genus, or family with more than 90% identity. Careful evaluation of the unassigned reads corroborated that these sequences were true COI sequences belonging mostly to diverse eukaryotic groups, not present in the reference databases. Principal component analyses showed a strong correlation of the community composition with the surface land‐use (agriculture vs. forest) and geology (fissured rock vs. unconsolidated sediment). While incomplete reference databases limit the assignment of taxa in groundwater eDNA metabarcoding, we showed that taxonomy‐free approaches can reveal large hidden diversity and couple it with major land‐use drivers, revealing their imprint on chemical and biological properties of groundwater

    Description of a widely distributed but overlooked amphipod species in the European Alps

    Full text link
    Amphipods are keystone species in many freshwater ecosystems. Understanding their distribution and diversity is crucial to ensure and preserve freshwater ecosystem functioning, particularly in the northern hemisphere. For the European Alps information on amphipods has been relatively limited until recently. We describe a new, widely distributed amphipod species, Gammarus alpinus sp. nov., found across the Alps and analyse its distribution, biogeography as well as genetic and morphological differentiation. Until now, this species has been reported as Gammarus lacustris. Based on genetic and morphometric measurements, we show that G. alpinus is highly divergent from G. lacustris. The latter has a circumpolar distribution, but may be absent from the Alps. The observed occurrence pattern of G. alpinus might be explained by a Pliocene range expansion and vicariance due to climate warming following the Quaternary glaciation. Historical drainage divides suggest a single recolonization route from a distinct southern refugium. While G. lacustris is widely distributed and not endangered at a global scale, G. alpinus is endemic to the Alps and its habitat is negatively affected by eutrophication, non-native species and possibly climate change

    Integrating citizen science and environmental DNA metabarcoding to study biodiversity of groundwater amphipods in Switzerland

    Get PDF
    Groundwater is the physically largest freshwater ecosystem, yet one of the least explored habitats on earth, both because of accessing difficulties and the scarcity of the organisms inhabiting it. Here, we demonstrate how a two-fold approach provides complementary information on the occurrence and diversity of groundwater amphipods. Firstly, we used a citizen science approach in collaboration with municipal water providers who sampled groundwater organisms in their spring catchment boxes over multiple weeks, followed by DNA barcoding. Secondly, we collected four 10 L water samples at each site, in one sampling event, for environmental DNA (eDNA) metabarcoding. We found that citizen science was very effective in describing the distribution and abundance of groundwater amphipods. Although the single time-point of eDNA sampling did not detect as many amphipods, it allowed the assessment of the entire groundwater community, including microorganisms. By combining both methods, we found different amphipod species co-occurring with distinct sequences from the eDNA-metabarcoding dataset, representing mainly micro-eukaryotic species. We also found a distinct correlation between the diversity of amphipods and the overall biodiversity of groundwater organisms detected by eDNA at each site. We thus suggest that these approaches can be used to get a better understanding of subterranean biodiversity

    Phylogenetic structure and molecular species delimitation hint a complex evolutionary history in an Alpine endemic Niphargus clade (Crustacea, Amphipoda)

    Get PDF
    Subterranean fauna is an important contributor to the global fauna, but it is still understudied and a large part of its taxonomy is not yet resolved. One species complex with unresolved taxonomy is the groundwater amphipod Niphargus ruffoi, endemic to the Alpine chain. Here, we used new samples from across the Alpine arc to review the taxonomic status of the entire clade, including the species N. ruffoi and Niphargus arolaensis. We sequenced four genetic markers from the collected specimens, assessed the phylogenetic position of N. ruffoi within the genus, and studied the structure of this species complex using four molecular species delimitation methods. We tested for recombination using the alignments of the concatenated nuclear rDNA genes. The phylogenetic analyses revealed high support for the monophyly of the studied species complex, defining two lineages (i.e., N. arolaensis and N. ruffoi) within the clade. Molecular species delimitation methods suggested that N. arolaensis is a single species, while N. ruffoi should be considered as a species complex of three (using ITS) to eight (using COI) putative species. Moreover, we found a discrepancy between the different nuclear ribosomal DNA markers, indicating a possible recombination with fragments of 28S DNA of N. ruffoi s. lat. present in the genome of N. arolaensis. For the above-mentioned reasons, the internal phylogenetic structure of N. ruffoi s. lat. could not be fully resolved. Moreover, no clear morphological evidence supported the molecular species delimitation. Consequently, no taxonomic changes were proposed. We postulate that this complex scenario was influenced by Pleistocene climate oscillations with subsequent fragmentation events and secondary contacts, making this an interesting study system to investigate the evolution and biogeography of Alpine clades

    Translating Niphargus barcodes from Switzerland into taxonomy with a description of two new species (Amphipoda, Niphargidae)

    Full text link
    The amphipod genus Niphargus (Amphipoda: Niphargidae Bousfield, 1977) is the most species-rich genus of freshwater amphipods in the World. Species of this genus, which live almost exclusively in subterranean water, offer an interesting model system for basic and applied biodiversity science. Their use, however, is often limited due to the hitherto unresolved taxonomy within the whole genus. As a comprehensive taxonomic revision of the currently >425 Niphargus species is too demanding, it has been suggested that the taxonomy of the genus could be advanced in smaller steps, by reviewing regional faunas, that would eventually integrate into a global revision. In this study, we provide such a revision of Niphargus in Switzerland. First, we molecularly delimited, morphologically diagnosed, and formally described two new species, namely Niphargus luchoffmanni sp. n. and Niphargus tonywhitteni sp. n. Second, we updated and revised a checklist of Niphargus in Switzerland with new findings, and prepared a list of reference sequences for routine molecular identification, available at BOLD and GenBank. All available specimens of 22 known species from the area were morphologically examined, and their morphological variation was compiled in a data file of DEscription Language for TAxonomy, which can be used for automated generation of dichotomous or interactive keys. The data file is freely available at the World Amphipoda Database. Together, the checklist, the library of reference sequences, the DELTA file, but also a list of hitherto unresolved aspects are an important step towards a complete revision of the genus within a well-defined and biogeographically interesting area in Central Europe

    Climate, immigration and speciation shape terrestrial and aquatic biodiversity in the European Alps

    Full text link
    Quaternary climate fluctuations can affect speciation in regional biodiversity assembly in two non-mutually exclusive ways: a glacial species pump, where isolation in glacial refugia accelerates allopatric speciation, and adaptive radiation in underused adaptive zones during ice-free periods. We detected biogeographic and genetic signatures associated with both mechanisms in the assembly of the biota of the European Alps. Age distributions of endemic and widespread species within aquatic and terrestrial taxa (amphipods, fishes, amphibians, butterflies and flowering plants) revealed that endemic fish evolved only in lakes, are highly sympatric, and mainly of Holocene age, consistent with adaptive radiation. Endemic amphipods are ancient, suggesting preglacial radiation with limited range expansion and local Pleistocene survival, perhaps facilitated by a groundwater-dwelling lifestyle. Terrestrial endemics are mostly of Pleistocene age and are thus more consistent with the glacial species pump. The lack of evidence for Holocene adaptive radiation in the terrestrial biome is consistent with faster recolonization through range expansion of these taxa after glacial retreats. More stable and less seasonal ecological conditions in lakes during the Holocene may also have contributed to Holocene speciation in lakes. The high proportion of young, endemic species makes the Alpine biota vulnerable to climate change, but the mechanisms and consequences of species loss will likely differ between biomes because of their distinct evolutionary histories

    Climate, immigration and speciation shape terrestrial and aquatic biodiversity in the European Alps.

    Get PDF
    Quaternary climate fluctuations can affect speciation in regional biodiversity assembly in two non-mutually exclusive ways: a glacial species pump, where isolation in glacial refugia accelerates allopatric speciation, and adaptive radiation in underused adaptive zones during ice-free periods. We detected biogeographic and genetic signatures associated with both mechanisms in the assembly of the biota of the European Alps. Age distributions of endemic and widespread species within aquatic and terrestrial taxa (amphipods, fishes, amphibians, butterflies and flowering plants) revealed that endemic fish evolved only in lakes, are highly sympatric, and mainly of Holocene age, consistent with adaptive radiation. Endemic amphipods are ancient, suggesting preglacial radiation with limited range expansion and local Pleistocene survival, perhaps facilitated by a groundwater-dwelling lifestyle. Terrestrial endemics are mostly of Pleistocene age and are thus more consistent with the glacial species pump. The lack of evidence for Holocene adaptive radiation in the terrestrial biome is consistent with faster recolonization through range expansion of these taxa after glacial retreats. More stable and less seasonal ecological conditions in lakes during the Holocene may also have contributed to Holocene speciation in lakes. The high proportion of young, endemic species makes the Alpine biota vulnerable to climate change, but the mechanisms and consequences of species loss will likely differ between biomes because of their distinct evolutionary histories

    Groundwater is a hidden global keystone ecosystem

    Get PDF
    Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium‐to‐high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science‐policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change
    • 

    corecore