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1 | INTRODUCTION

Groundwater is the most extensive unfrozen continental reserve
of freshwater on Earth (Ferguson et al., 2021; Gleeson et al., 2016).
From deep karstic aquifers to shallow alluvial sediments, ground-
water is globally ubiquitous and functionally connected to surficial
aquatic and terrestrial groundwater-dependent ecosystems (GDEs).
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propose eight key themes to develop a science-policy integrated groundwater con-
servation agenda. Given ecosystems above and below the ground intersect at many
levels, considering groundwater as an essential component of planetary health is piv-
otal to reduce biodiversity loss and buffer against climate change.

biodiversity, biomes, climate change, conservation, ecology, ecosystems, groundwater-
dependent ecosystem, subterranean, water cycle

Groundwater interacts with the five global surface aquatic biomes
(Figure 1) and, together with oceans and the atmosphere, is the back-
bone of the global water cycle (Scanlon et al., 2023). While often ex-
clusively regarded as an economic resource, providing drinking water
and water for irrigation and industrial uses (United Nations, 2022),
groundwater is also an ecosystem. It hosts a vast diversity of mi-
crobial and metazoan species sustaining essential functions and

C\\D Temperature exchange

C@} Chemical/nutrient cycling

C‘D Microbial coupling
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Gq} Biotic interactions
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FIGURE 1 Schematic representation of interactions and functional links of groundwater ecosystems (in dark blue) with the five unfrozen
surface water biomes (marine and freshwater) composing the global water cycle (in light blue: (a) coastal waters, (b) oceans, (c) estuaries,

(d) rivers and (e) lakes). See Supporting Information Section 2 for a detailed description of the ecological and hydrological connections
between them. For conciseness, anthropogenic impacts are not illustrated; gaps between groundwater environments and the five unfrozen

surface water biomes have been added for illustrative purposes.
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processes (Canedoli et al., 2022; Griebler & Avramov, 2015), many
of which are endemic and highly specialized to a life in permanent
darkness (Howarth & Moldovan, 2018). Altogether, these special-
ized organisms account for a unique share of the global taxonomic,
phylogenetic and functional diversity (Malard et al., 2023), with re-
cent research estimating that more than 25,000 aquatic metazoan
species exist in freshwater and saline groundwaters worldwide
(Martinez et al., 2018).

The groundwater ecosystem is facing mounting anthropogenic
pressure (Castafo-Sanchez et al., 2020; Mammola et al., 2019;
Vaccarelli et al., 2023). Water depletion driven by urbanization,
industry, agriculture and exacerbated by climate change, has been
documented on both regional and global scales (Wada et al., 2010).
According to estimations, nearly 50% of the world's urban popu-
lation depends on groundwater resources (United Nations, 2022),
with the human demand currently being about 3.5 times the actual
volume of aquifers (Gleeson et al., 2012). This situation is likely
to further deteriorate: as the intensification of drought and flood
events induced by climate and land use change increases, the de-
mand and dependence on groundwater for human consumption,
agricultural irrigation and environmental water needs will also es-
calate (Condon et al., 2020; Wu, Lo, et al., 2020). Furthermore,
salinization and contamination of groundwaters by persistent or-
ganic pollutants such as nitrate, heavy metals, oil and microplas-
tics is a major threat to diverse subterranean ecosystems and, in
turn, to the integrity of the global water cycle (Castafio-Sanchez
et al., 2020). Subterranean waters are often old: once meteoric
waters enter subterranean systems, it may take months, years and
sometimes millennia before they resurface (Jasechko et al., 2014).
Hence, there is often a generational lag between contamination
event and effect, and even major conservation efforts might take
an epoch before these ecosystems recover. Ultimately, we risk
compromising the insurance policy of life on Earth: the largest
body of liquid freshwater.

Despite growing concerns over global groundwater depletion
and degradation, and the feedback effect on diverse surface eco-
systems, subterranean ecosystems remain the dark exotic siblings
of surface water bodies when it comes to conservation (Griebler
et al., 2023). Indeed, groundwaters have so far been largely over-
looked in global conservation policies, and biodiversity and climate
change agendas for water resources (Fiser et al., 2022; Sanchez-
Fernandez et al., 2021; Vaccarelli et al., 2023; Wynne et al., 2021).
For example, as many as 85% of protected areas with GDEs have
groundwater sheds (or catchments) that are unprotected (Huggins
et al., 2023). Foremost, this is because of the still incomplete knowl-
edge about the spatial distribution, biodiversity, vulnerability and
biochemical processes and services of groundwater ecosystems
(Gerovasileiou & Bianchi, 2021; Mammola et al., 2022; Wynne
et al., 2021). While divers can physically explore submerged caves
and cenotes, the vast majority of subterranean water bodies are in-
accessible to humans unless by indirect means (Ficetola et al., 2019;
Navarro-Barranco et al., 2023; Sacco, Blyth, Douglas, et al., 2022).
Indeed, access to groundwater organisms is often restricted to
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caves, wells and springs that serve as windows to the subterranean
world (Malard et al., 2023). The real extent of groundwater ecosys-
tems is therefore roughly estimated (between 22.6 and 23.6 million
km? in the upper 2 km of continental crust, see Ferguson et al. (2021)
and Gleeson et al. (2016)) and we have only a partial understanding
of their three-dimensionality and verticality—that is, structural di-
versity (Fei et al., 2023). Furthermore, as the adage ‘out of sight, out of
mind’ goes, there is generally poor awareness about the importance
of the groundwater biodiversity and ecosystem services across pol-
icymakers, stakeholders and the general public alike (Supporting
Information Section 1). This lack of awareness reflects the conser-
vation status of groundwaters: in many areas of the world, ground-
water ecosystem protection is confined to aquifers with economic
value or the unplanned overlap between valuable groundwater
ecosystems and protected areas established for surface ecosystems
(Giakoumi et al., 2013; Sanchez-Fernandez et al., 2021).

As a result, a global approach to policy that incorporates the
value of groundwater ecosystems and their services is required ur-
gently. With this in mind, we propose the application of the keystone
ecosystem concept to groundwater, as this approach has proven to
be extremely valuable in nature conservation (Tews et al., 2004).
By mapping predicted groundwater biodiversity and its overlap
with surface biodiversity at global scale, we provide both concep-
tual and empirical evidence that this focus is scientifically sound,
timely and beneficial for the broader context of groundwater con-
servation. Following the GDEs categorization proposed by Eamus
and Froend (2006), we focus on the ecological and functional links
between groundwater ecosystems (e.g. aquifers and caves where
aquatic subterranean biota reside; GDE class |) and GDEs requiring
the surface expression of groundwater (e.g. wetlands and rivers;
GDE class Il) or GDEs dependent on groundwater availability for
their biodiversity, growth and productivity (e.g. forests, GDE class
11).

With the goal of taking a step further towards inter-realm ap-
proaches, we also highlight eight directions—spanning from bio-
monitoring to transboundary policies—to advance conservation of
groundwater and groundwater-dependent ecosystems over two
interlinked axes of science and policy. A much stronger focus on
groundwater conservation is needed in the face of accelerating
global climate change and uncontrolled biodiversity loss, and we
advocate that such a change in perspective and management strate-
gies will consistently increase the efficacy of our global conservation

strategies.

2 | CURRENT CONSERVATION EFFORTS
OF GROUNDWATER ECOSYSTEMS:

THE CHALLENGE OF PROTECTING THE
‘UNKNOWN’

Comprehensive protection of groundwaters, whether direct or in-
direct via conservation of GDEs, is lacking or not implemented in
most regions (Boulton et al., 2023; Famiglietti, 2014). Globally, there
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are only a few examples of direct conservation measures for sub-
terranean habitats or groundwater species (Boulton et al., 2023).
Global treaties on biodiversity or conservation frequently fail to rec-
ognize groundwaters (lannella et al., 2021) or are hindered by the
limited taxonomic description of most groundwater biota (Boulton
et al., 2023). The application of direct conservation measures is
complicated by inconsistencies between conservation and natural
resource legislation (Devitt et al., 2019) and often the boundaries
of aquifers transcend those of jurisdictions or surface catchments
that are the typical focus of land and water management (Huggins
etal., 2023).

Until recently, direct protection and conservation measures for
groundwater ecosystems have focused on protecting rare, iconic
species or habitats (Boulton et al., 2023; Griebler et al., 2023;
Mammola et al., 2022; Moldovan, 2019), being generally informed
by habitat mapping (Cornu et al., 2013) and species-occurrence da-
tabases (Zagmajster et al., 2014). This focus has enabled the con-
servation of globally significant areas (Devitt et al., 2019; lannella
et al.,, 2020), but is ineffective in areas where the knowledge of
habitats is limited and biota are unknown or undescribed (Mammola
et al., 2019; Raghavan et al., 2021). Phylogenetic or functional di-
versity can be used to prioritize conservation sites when taxonomic
information is lacking (Asmyhr et al., 2014); conservation bioge-
ography and species distribution modelling approaches also have
potential as management tools (Mammola & Leroy, 2018), but are
challenged by a lack of robust theoretical models to explain the dis-
tribution of biota at relevant spatial and temporal scales (Boulton
et al., 2023) and the high endemism typical of groundwater fauna
(Mammola & Leroy, 2018).

The sustainable management of groundwater resources has
been insufficient in protecting groundwater ecosystems, partly
because its primary focus is the availability of water for humans
rather than the ecological needs of the organisms therein. Although
limiting groundwater allocations indirectly benefits groundwater
ecosystems, this anthropocentric focus often ignores the quality
and quantity of water needed for maintaining ecosystem processes
(Howard et al., 2023; Korbel & Hose, 2011). Groundwater vulner-
ability mapping (Machiwal et al., 2018) has promise as a means for
assessing and managing risks to groundwaters but is generally more
focused on a single resource protection than ecosystem protection.
This is problematic because only through the preservation of healthy
groundwater biota, including both microbes and metazoans, can we
ensure the maintenance of key ecological processes and the func-
tional links with surface water ecosystems (Figure 1).

Ultimately, groundwater and connected GDEs should be man-
aged and conserved together, under a ‘one water’ framework (Linke
et al., 2019; McNutt, 2014). However, human needs often triumph
over environmental water needs where knowledge is limited (Rohde
et al., 2017), rendering this an unrealistic option for conservation.
As a result, other approaches must be explored and implemented
to ensure the preservation of a healthy groundwater ecosystem.
Like climate change more broadly, current inaction (‘too little’) is not
only generating increased contamination, habitat fragmentation and

higher rates of biodiversity loss, but also risks compromising the ef-
ficacy of our future actions (‘too late’) because they will be imple-

mented on already deteriorated groundwater ecosystems.

3 | SHAPING GROUNDWATER AS A
KEYSTONE ECOSYSTEM

Assessment, monitoring and management of biodiversity frequently
relies on the use of community representatives such as flagship, um-
brella and keystone species, whose protection benefits many other
species in different ways (Caro, 2010; Lundberg & Arponen, 2022;
Verissimo et al., 2011). While all these proxy species approaches
are constantly constrained by their intrinsic metaphorical nature
(Barua, 2011), the emphasis of the keystone species on links among
species has been raised as an ‘appropriate target for management’,
given the implementation of this approach can provide a good com-
promise between species-oriented and ecosystem function-ori-
ented conservation strategies (Simberloff, 1998).

Initially coined by Robert T. Paine (1933-2016), the term ‘key-
stone species’ was intended for species of high trophic status, whose
activities exert disproportionate influence on the structure and
function of biological communities (Paine, 1969a, 1969b). This con-
cept argues that a single top predator indirectly controls resource
use at lower trophic levels. Upon its removal, one species would mo-
nopolize resources, exclude competitor species and cause a decline
of biodiversity (Paine, 1966). The use of keystone or any other proxy
species in nature conservation is frequently advocated for systems
where the number of species being protected or monitored is un-
certain (Wiens et al., 2008), such as groundwater (Larned, 2012).
However, while keystone species appear to be a promising approach
for protection and monitoring of groundwater ecosystems, its im-
plementation is hindered by conceptual and applied issues (Box 1).

The extension of the keystone concept to communities or eco-
systems (Mouquet et al., 2013) is a plausible area to explore for eas-
ing some of the current roadblocks in groundwater conservation
efforts (Suppoting Information Section 1). Since the early 1990s,
conservation strategies across the globe have shifted their focus
from species to habitat/ecosystem level (Lindenmayer et al., 2007).
Complementarity between both approaches has been recognized
as beneficial (Lindenmayer et al., 2007), but overall, the increased
cost-effectiveness and elaboration of more effective management
guidelines are reported for the ecosystem-level focus (Walker &
Salt, 2012), as well as reducing funding bias (Adamo et al., 2022). The
value of this approach is enhanced when applied to groundwater
habitats, where biodiversity is still mostly spared from macro-organ-
ismal invasive species possibly due to the selective conditions and
isolation of these environments (Nicolosi et al., 2023). As a result,
compared to other surface counterparts such as rivers and lakes,
groundwaters can be broadly considered less biologically degraded
(even if still mostly unprotected worldwide) ecosystems, a common
prerogative for conservational purposes through keystone ecosys-
tem approaches (Mouquet et al., 2013).
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BOX 1 Keystone species in groundwater
ecosystems: An impossible task?

There are many obstacles to the implementation of the con-
cept of keystone species in groundwater ecosystems, empha-
sizing the need to adopt a ‘keystone ecosystem’ approach. The
first, main challenge lies in the identification of appropriate
keystone species. The term ‘keystone’ has been broadly de-
bated (Davic, 2003; Mills et al., 1993) and refined such that it
could apply to all species from any trophic level. The ultimate
recognition of keystone species, however, remains a two-step
procedure that first applies operational criteria to identify
keystone candidates, and then empirically tests how their re-
moval impacts species diversity in a community (Davic, 2003).
Nonetheless, the application of this procedure to groundwater
is theoretically questionable and technically challenging be-
cause a clear picture of trophic structure for all GDEs is miss-
ing. For example, until recently, groundwater was considered a
bottom-truncated ecosystem, with no primary producers and
few specialized top predators (Gibert & Deharveng, 2002).
Since then, some evidence for trophic specialization within
trophic levels has been identified (Ercoli et al., 2019; Francois
et al, 2016, 2020; Sacco, Blyth, Humphreys, Karasiewicz,
et al., 2020; Sacco, Humphreys, et al., 2022), including the
discovery of autotrophic systems based on chemoautotrophic
bacteria that serve as primary producers (Sarbu et al., 1996).
These aspects, together with existing multiple trophic lev-
els within species-rich groundwater communities (Hutchins
et al., 2016; Premate et al., 2021; Sacco, Blyth, Humphreys,
etal., 2019; Sacco, Blyth, Humphreys, Cooper, et al., 2020) and
the frequent dependency on surface carbon sources in bio-
diverse shallow groundwater ecosystems (Sacco et al., 2021;
Sacco, Campbell, et al., 2022; Simon et al., 2003), make it dif-

ficult to identify suitable keystone species in most cases.

Second, there is a remarkably high frequency of narrow range
endemics among groundwater species (Malard et al., 2009).
High spatial turnover in groundwater species composition at
larger geographical scales emerges as a consequence of the
dominance of species with small distributional ranges (Bregovi¢
et al., 2019; Trontelj et al., 2009). Identifying keystone species
on a scale of some 10km is often an impossible task.

Third, the vertical dimension of groundwater exacerbates the
aforementioned issues. Groundwater is not a homogenous
habitat, but an array of interconnected habitats (Culver &
Pipan, 2014; Fiser et al., 2014). In groundwater ecosystems, life
has evolved to use space in three dimensions. In karstic massifs
alone, at the same geographical point, species from fissure sys-
tems in the unsaturated zone live under different environmen-
tal conditions to species from the permanently flooded zone
(Culver & Pipan, 2019), leading to vertically stratified com-
munities. Such vertically distributed communities may be only
weakly connected functionally, with predators in lower zones

hardly influencing dynamics in upper zones.
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Concurrently, recent investigations into GDEs [class Il and Il
according to Eamus & Froend, 2006] indicate that they are widely
distributed in dry climate zones [accounting for almost a third of
the total global surface area, Salem, 1989], and groundwater sup-
ports riparian and floodplain vegetation in tropical and temperate
zones (Glanville et al., 2023). Globally, groundwater has strong phys-
ical/ecological relationships with surface water (e.g. intermittent
streams), and the presence of surface water in some geographi-
cal areas is highly related (at least in some periods of the year) to
groundwater level [e.g. groundwater-fed streams in semi-arid areas,
Eamus & Froend, 2006]. For instance, shallow groundwater influ-
ences 22%-32% of global land area, and 15% of groundwater-fed
surface water features and plant rooting zones (Fan et al., 2013).

Similar to the transition from species- to ecosystem-level conser-
vation agendas, the shift from local to regional and continental stud-
ies in groundwater ecology has been undoubtedly enabled by the
increased availability of data, combined with the enhanced aware-
ness of the importance of groundwater at global scale (Huggins
et al., 2023). As a result of all these observations, groundwater pro-
vides a uniquely valid conceptual candidate to be a keystone ecosys-
tem, defined as ecological structures ‘providing resources, shelter or
‘goods and services’ crucial for other species’ (Tews et al., 2004).

Partially due to the lack of groundwater accessibility and the
resultant lack of subterranean spatial analysis, data sources for en-
vironmental parameters driving groundwater biodiversity patterns
on a global scale are currently limited to estimates of water quan-
tity (e.g. groundwater recharge and water table depth). To evaluate
the potential of groundwater ecosystems as keystone ecosystems,
we modelled available data to map the biodiversity of groundwater
ecosystems in combination with groundwater interaction with the
surface (Figure 2). This analysis is based on an indicator composed
by four proxies: three proxies that are positively associated with
groundwater ecosystem biodiversity, (i) groundwater recharge (e.g.
Reinecke et al., 2021), proxy for high biodiversity because ground-
water recharge regimes are associated with the inflow of nutrients,
replenishment of water and oxygen regeneration; (ii) existence of
karst (e.g. Zagmajster et al., 2018), proxy for habitat availability and
connectivity; (iii) interaction between groundwater and surface
water (e.g. Hancock et al., 2005), another proxy for high biodiver-
sity being a key factor in enriching oligotrophic groundwater envi-
ronments with carbon loads and fresher water resources; and (iv)
groundwater water table depth as negatively associated proxy to
the same biodiversity factor (e.g. Fan et al., 2013) (see Supporting
Information Section 3 for further information and limitations of
these assumptions; de Graaf et al., 2015; Fan et al., 2013; Reinecke
etal., 2019; Verkaik et al., 2022).

Globally, 7.1% of the land area shows a high degree of groundwa-
ter biodiversity (90th percentile globally) and high interconnectivity
to surface water bodies (90th percentile globally). 52.6% of global
areas have medium to high interactions, independent to the mod-
elled groundwater biodiversity considered. In almost a third of the
global area (29.8%) there is only low (10th percentile) predicted sub-
surface biodiversity coupled with groundwater-surface water inter-
action. Within this category, a vast portion is occupied by deserts
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FIGURE 2 Linkages between predicted groundwater ecosystem biodiversity and groundwater-surface water exchange fluxes. Dark
green areas in (a-c) indicate a high groundwater ecosystem biodiversity and a high interaction between groundwater and surface water.
Light green in (a-c) indicates areas with high groundwater biodiversity but low interactions, blue indicates high interactions (in both
directions) between surface water and groundwater but low groundwater biodiversity. Groundwater ecosystem biodiversity is approximated
by groundwater recharge, karst and water table depth. The interactions between groundwater and surface water are based on a global
groundwater model. The categories of biodiversity and exchange fluxes are based on quantiles of normalized data. Orange markers in (a)
identify focus regions used to evaluate the map, and (b, c) show zoom-ins on the Po and Mekong river basins, respectively (See Supporting
Information Section 3 for an in-depth development and discussion of this figure). Map lines delineate study areas and do not necessarily

depict accepted national boundaries.

(e.g. Sahara Desert covering 8% of total global area) and high moun-
tains, regions where the water table can be very deep (e.g. certain
areas in the Andes), the recharge rates are very low (e.g. Arabian
Desert) and/or surface environments host low biodiversity (e.g.
Kalahari Desert). Once those areas with modelled low biodiversity
and low interactions are removed from the global analysis, the pro-
portion of areas with medium to high interactions jumps to 74.9%.
Nonetheless, within these broad regions categorized as low biodi-
verse, important pockets of groundwater biodiversity do exist. For
instance, the Pilbara in Australia is considered a major subterranean

biodiversity hotspot globally (Sacco, Blyth, Bateman, et al., 2019),
and the seemingly inhospitable Sahara Desert hosts endemic spe-
cies of copepods in its groundwater ecosystems (Brancelj, 2015). An
in-depth global analysis on these ‘islands under the desert’ (Cooper
et al., 2002) would shed further light on the understanding of func-
tional groundwater-surface water interactions, and will only be pos-
sible once further data are gathered.

Having mapped where groundwater biodiversity is potentially
high and connected to the surface, we incorporated the occurrence
of surface ecosystems into the analysis (Figure 3a,b). We combined
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FIGURE 3 Linkages between predicted surface ecosystem biodiversity and connected groundwater biodiversity. Here we show how
categories of groundwater biodiversity and interaction (Figure 2) relate to surface ecosystem biodiversity. With higher groundwater
ecosystem biodiversity and interaction (C1 =lowest; C9 =highest), surface ecosystem biodiversity increases as well (a). This relationship is
mapped into nine new categories of surface ecosystem biodiversity and groundwater ecosystem biodiversity and interaction (D1 =lowest;
D9 =highest) shown on a global map (b). Dark blue in (b) indicates areas of high ecosystem biodiversity, high groundwater ecosystem
biodiversity, and high interactions between groundwater and surface water. Pink areas indicate only a high surface biodiversity, and
turquoise, areas without large surface ecosystem biodiversity. Groundwater-surface water interactions and groundwater ecosystem
biodiversity are based on Figure 2. Surface ecosystem biodiversity is based on soil bacteria, riverine fish diversity, macrophyte diversity and
vascular plant diversity, and the biodiversity categories are based on normalized data quantiles (see Supporting Information Section 3). Map
lines delineate study areas and do not necessarily depict accepted national boundaries.

the previous map (Figure 2) with an indicator for surface ecosystem
biodiversity (consisting of the integration of four proxies: soil bacte-
ria, plant diversity, macrophyte occurrence and riverine fish species
richness; Supporting information Section 3). Our goal was to esti-
mate the overlaps and interdependence between groundwater and
surficial ecosystems' biodiversity patterns. Therefore, we excluded

higher-order biodiversity indicators such as avian or mammalian
diversity, given that these taxa are not necessarily associated with
the interlinked groundwater-surface ecosystems at a global scale.
Indeed, an analysis involving groups such as marine animals (Lecher
& Mackey, 2018) or reptiles (Bateman & Merritt, 2020), and model-
ling their degree of direct or indirect dependency/functional links
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with groundwater resources could be of much interest, but it lies
outside of the scope of current work.

Globally, for 10.1% of the land area there is an overlap between
predicted high groundwater biodiversity and interactions (90th
percentile globally), and predicted high surface biodiversity (90th
percentile globally). Half of global surficial area (50.0%) has high bio-
diversity with some extent of groundwater interactions, reaching up
to 71.7% when groundwater sheds (Huggins et al., 2023) are consid-
ered (see Supporting Information Section 3). For all the three sur-
face biodiversity categories (low, medium and high), the areas with
the lowest groundwater biodiversity and interactions (10th percen-
tiles) were the most abundant (8.4%, 32.1% and 23.9% respectively).
However, the choice of aggregation of Figure 2 (compare Figure S11)
influences this outcome towards more areas with low biodiversity
and interaction.

Overall, our findings suggest that global groundwater biodiver-
sity and interactions can be considered as a first-order estimator
for surface biodiversity (Figure 3a). For example, when we focussed
into the Po (North Italy; Figure 2b; Figure S13b) and Mekong
(Southeast Asia; Figure 2c; Figure S15b) river basins, two areas
that in 2022 experienced the worst droughts in 70years (Bonaldo
et al., 2023; Kang et al., 2022), distinctive patterns emerged. The
Po basin shows a high groundwater ecosystem biodiversity close to
the Alps and the Mediterranean Sea with medium interconnectiv-
ity to surface waters compared to other global systems (Supporting
Information Section 3). On the other hand, the Mekong shows a
high groundwater ecosystem biodiversity and interconnection be-
tween groundwater and surface water. When surface biodiversity
is incorporated in the modelling, the Po basin (Figure S13b) shows
hotspots of groundwater ecosystem biodiversity and surface eco-
system biodiversity closer to the delta and the pre-Alp areas. In
contrast, hotspots of interconnectivity remain as in Figure 2b. The
Mekong shows extensive areas of high surface and subsurface eco-
system biodiversity together with a highly interconnected system
(Figure S15).

Groundwater and surface systems are often interconnected,
and focusing only on one, limits the effectiveness of conservation
efforts. Only a holistic view that includes groundwater ecosystems
will enable us to understand how excessive groundwater extraction
will also affect surface ecosystems (Uhl et al., 2022) and how land
cover changes, for example, deforestation, agricultural use or effect
of river incision, will affect the groundwater quantity and quality
and, in turn, the connected ecosystems. Without further research,
the global role of groundwater in the carbon cycle remains unclear.
When prioritizing areas for biodiversity conservation, integrating
surface and groundwater biodiversity is more effective (Rohde
et al., 2019). Combined protection of surface and subsurface areas is
most efficient in terms of costs, available space and societal aware-
ness. Recognizing groundwater as a keystone ecosystem highlights
the cascading effects that would be triggered if we further contami-
nate and/or deplete groundwater. While some authors have already
discussed the hydrological transboundary role of groundwater at
global scale (Gleeson et al., 2020), to the best of our knowledge, this

is the first ecological quantification of groundwater ecosystems' rel-

evance for the Earth system.

4 | SETTING THE GROUND(WATER)
FOR A MORE EFFECTIVE PROTECTION OF
AQUATIC SUBTERRANEAN ECOSYSTEMS

The success of groundwater conservation in the 21st century will
be contingent on our ability to limit climate change (Amanambu
et al., 2020), minimize contamination (United Nations, 2022) and
reduce overexploitation of natural resources (Foster et al., 2013).
However, the magnitude of the challenge ahead is in stark contrast
with ongoing conservation inaction (Mammola et al., 2019, 2022;
Sanchez-Fernandez et al., 2021). Amidst an increasingly unpredict-
able climate, widespread aridification and scattered rainfall events
(IPCC, 2022), many rivers and lakes are transitioning from perma-
nent to intermittent (Messager et al., 2021), glaciers and snowfields
are melting away, and thus two major freshwater sources are rap-
idly disappearing across several regions (Peterson et al., 2021). As
a result, the reliance of surficial watersheds on aquifers is increas-
ing, with groundwater providing the only permanent (if replenished)
freshwater resource available for many areas worldwide. Given the
uneven distribution of global groundwater (Kretschmer et al., 2023),
inequitable access and the limited replenishment of ancient global
groundwater reserves, shifts in the dependence of ecosystems from
surface to groundwater will be spatially variable (Link et al., 2023;
Lopez-Corona et al., 2013). Therefore, effective groundwater gov-
ernance will be a crucial aspect to mitigate the impact of droughts on
economies, societies and diverse environments (Petersen-Perlman
et al., 2022).

Recent research has demonstrated that groundwater eco-
systems and their biota actively assimilate terrigenous carbon
(Hartland et al., 2011), acting as carbon sinks (Chen et al., 2023)
analogous to freshwater wetlands. Hence, maintaining the carbon
assimilation capacity of groundwater ecosystems is essential to
maximize the terrestrial carbon sink and minimize climate change
effects. Aquifers are also crucial for maintaining surface environ-
ments (Boulton et al., 2010), including their biodiversity, within
natural and anthropogenic contexts (Becher et al., 2022; Figure 4).
However, current lack of implementation of effective groundwater
management strategies is hindering also the preservation of asso-
ciated GDEs. The development of biodiversity indices for ground-
water ecosystems, similarly to biodiversity variables proposed
to monitor biodiversity at global levels (Jetz et al., 2019; Pereira
etal., 2013) and for discrete targeted purposes (Guerra et al., 2021),
could provide a solution to overcome this roadblock. By initially tar-
geting well-studied regions with comprehensive diversity datasets
[e.g. the Krim region in Slovenia (Sket et al., 2004) or the Pilbara
in Western Australia (Sacco, Blyth, Douglas, et al., 2022)] regional
biodiversity indices can be designed, with the goal to expand the
foci as groundwater biodiversity data from less studied systems
become available.
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FIGURE 4 Examples of groundwater ecosystem services within anthropic (a, b, ¢) and natural (d, e, f, g) frameworks and recommended
guidelines for groundwater conservation in terms of scientific advancements (top right) and policy developments (top left). Anthropic
environment: (a) clean groundwater plays a key role in maintaining the agrobiodiversity (Trajkova et al., 2021); (b) interchanges between
urban wetlands and groundwater can maintain the diversity of aquatic species and the functional integrity of urban wetlands (Ameli &
Creed, 2019); (c) water for urbanization can also supply a key resource for the maintenance of urban vegetation (Marchionni et al., 2020);
natural environment: (d) terrestrial vegetation groundwater-dependent ecosystem (GDE; Shukla et al., 2022); (e) lotic GDE (Erostate

et al., 2020); (f) lentic GDE (Wu, Ma, et al., 2020); (g) coastal GDE (Santos et al., 2021).

Overall, our analysis emphasizes the high interconnectedness break a major barrier hampering conservation, offering much-
between groundwater and surface systems, and demonstrates how needed data for accurate assessments of global groundwater
focusing only on one compartment limits the effectiveness, scope biodiversity and providing information for evidence-based
and comprehensiveness of conservation efforts. To achieve more conservation (Mammola et al., 2022). Similar to rivers and lakes,
holistic conservation strategies, we will need to find effective strat- integration of this information with available hydrogeological
egies able to overcome the surface-subterranean divide. With this data will directly enhance the quality of groundwater environ-
in mind, we advocate for a two-tiered approach for the conservation mental assessments. At transboundary ecosystem levels, pub-
of groundwaters, composed by science and policy, and we propose lished global data on the distribution of GDEs are not available
eight key focal areas to develop an effective global strategy. to date. However, successful initiatives such as the Australian

GDE Atlas (Doody et al., 2017) provide a promising initial step
(i) Create standardized global datasets. Global dataset's record towards the creation of a scientifically sound global GDE map.
information on groundwater fauna is abundant, but generally Like in other disciplines, application of FAIR Data Principles
scattered across myriad databases, publications and personal (Wilkinson, 2016) to all global groundwater-based generated
datasets, often not openly accessible and lacking inter-opera- data should be ensured, assuring effective findability, accessi-
bility due to different data standards and vocabularies. Two on- bility, interoperability and reuse of these digital assets.
going ambitious projects, the World Register for marine Cave (ii) Test and apply novel biomonitoring approaches. Novel biomoni-
Species (WoRCS; Gerovasileiou et al., 2016) and Stygofauna toring of groundwater and its typical biota is a crucial aspect
Mundi (Martinez et al., 2018), aim to create centralized, openly of environmental management, as many ecosystem services
available and comprehensive taxonomic and ecological da- are dependent on a healthy environment and diversity of
tabases of all groundwater organisms. If successful, this will species that, despite being almost invariably overlooked, are
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irreplaceable (Griebler & Avramov, 2015). While monitoring of
physical-chemical properties or chemical pollutants in ground-
water is a regular practice across the world, the biota are often
overlooked if not in connection with pollutant contamination.
Therefore, novel tools are required to monitor these eco-
systems. Particularly promising is the use of DNA extracted
from environmental samples (environmental DNA or eDNA,
Pawlowski et al. (2020)) to assess diversity of, and map the
distributions of, species (Takahashi et al., 2023). First applica-
tions of eDNA to groundwater systems have been promising,
recovering vast biodiversity hitherto mostly undocumented
(Alther et al., 2021; Couton, Hirlemann, et al., 2023; Couton,
Studer, et al., 2023; Sacco, Guzik, et al., 2022; van der Heyde
et al., 2023). For selected taxa such as subterranean salaman-
ders and cavefish, bioacoustics, the study of animal sounds,
can be used to not only detect species, but also inform on their
welfare and behaviour (Hyacinthe et al., 2019; Mcloughlin
etal., 2019).

(iii) Advance science to better understand ecosystem function.

(iv

Capturing the entire diversity of subterranean species is cur-
rently not logistically feasible. For instance, it is estimated
that 80% of the world's biggest subterranean biodiversity
hotspot region, Western Australia, is undescribed (Guzik
et al., 2011). Therefore, traditional diversity metrics may not
provide a mechanistic understanding of disturbance effects (Li
et al., 2021). To circumvent this, the use of trait-based (func-
tional) methods is gaining ground in recent ecological studies.
This approach highlights how functional traits (intended, in a
broad sense, as morphological, ecological, physiological, be-
havioural features measured at the species level, see Toussaint
et al., 2021) mediate a species' ability to respond to changes
in their environment (Green et al., 2022; Palacio et al., 2022).
However, functional studies targeting groundwater ecosys-
tems are still rare (Hose et al., 2022). At a global level, an in-
depth and groundwater-specific functional characterization
proposed by Keith et al. (2022) could be informative. Microbes
and aquatic invertebrates are essential for subterranean eco-
system functioning, contributing to nutrient cycling, energy
flow, water filtration and biodiversity (Malard et al., 2023;
Sacco, Blyth, Humphreys, Middleton, et al., 2020; Sacco, Blyth,
Venarsky, et al., 2022; Venarsky et al., 2023). Therefore, tar-
geting these components of underground aquatic ecosystems
unveils crucial aspects of functioning and resilience.

Involve interdisciplinary approaches. A cross-pollination of ideas
among researchers from different scientific backgrounds—for
example, hydrologists, hydrogeologists, climatologists, geo-
chemists, ecologists and taxonomists—and operating both
above and below the ground would enhance the implementa-
tion of conservation interventions able to embrace the entirety
of the surface-subterranean continuum. Some possible ways
forward to break the artificial divide between surface- and
subterranean-based scientists and foster cooperation could
include: (a) limiting discipline-specific jargon in communication

<

(vii)

(Martinez & Mammola, 2021); (b) broadening reading habits
outside one's own niche expertise; (c) seeking active collabora-
tion by exposing oneself to different scientific cultures (e.g. by
attending scientific meeting outside one's own expertise); and
(d) fostering open data policies to ensure data exchange among
researchers, groups and companies as well as data availability
for future generations.

Implement global policies to protect transboundary waters.
Conservation of biodiversity often requires operating across
country boundaries (Liu et al., 2020), an endeavour often
complicated by bureaucracy and geopolitical instability
(Allan et al., 2019; Sousa et al., 2022). Worldwide, 468 trans-
boundary aquifers (namely aquifers crossing multiple states,
Stephan, 2009) have been delineated (IGRAC, 2021), several
of which are subject to mounting human pressure (Wada &
Heinrich, 2013). However, there is currently no specific global
convention or law for the management of transboundary aqui-
fers. Today, transboundary aquifers are still governed by the
1997 UN Watercourses Convention which applies to ground-
water systems, ‘[...] but only to the extent that an aquifer is
connected hydrologically to a system of surface waters, parts of
which are situated in different States’ (United Nations, 1997).
Transboundary aquifers cooperation is still lagging as it is di-
rectly related to the capacity of the States to understand and
value the groundwater systems and associated ecosystems
they depend upon. Efforts should be made on valuing ground-
water as a shared resource beyond frontiers—for example, by
reporting evidence of anthropogenic impact on transboundary
groundwater ecosystems to showcase and boost transbound-
ary aquifers' cooperation (Brancelj et al., 2020).

Improve water management and governance. It is essential to
achieve a more balanced effort (both financial and conser-
vational) to the management of the different components of
the hydrosphere and biosphere. The historical focus on sur-
face water in freshwater management (Foster et al., 2013), in
part reflects knowledge deficits on the role of groundwater
ecosystems at the time when the main freshwater policies
were set up (EC-GWD, 2006) and the lack of ability in updat-
ing and adjusting strategies as scientific research progresses
(Backhaus, 2023; Supporting Information Section 1). Now,
30years after the publication of the cornerstone book ‘The
Freshwater imperative’ (Naiman et al., 1995), inter-realm moni-
toring and management are more imperative than ever (Bugnot
et al., 2019). It is just a matter of treasure lessons learned, ex-
panding views and being ambitious (Saito et al., 2021). Most
ecosystems will benefit from this timely (almost overdue) shift
in perspectives.

Develop restoration and monitoring programs. Hydrogeological
restoration of aquifers (Kresic, 2009) and surface-groundwa-
ter interactions (Kasahara et al., 2009) have been the focus of
extensive research over the last three decades, yet studies on
the ecological restoration of groundwater ecosystems are still
rare (Liu & Mou, 2016). As data on groundwater biodiversity
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and resilience to contamination and climate change are gath-
ered, integration of comprehensive biotic-driven restoration
guidelines is essential for the effective management of ground-
water pollution both in natural and anthropogenic contexts
(Scanlon et al., 2023).

(viii) Encourage participatory approaches. The value of a natural
resource is only acknowledged when citizens and key stake-
holders are involved (Kobori et al., 2016). This is true for
subterranean ecosystems, where the success of conserva-
tion campaigns often rests on the involvement of multiple
actors—from conservation scientists, to the media, the public
and decision-makers (Gavish-Regev et al., 2023). For example,
Alther et al. (2021), Couton, Studer, et al. (2023) and Raghavan
et al. (2023) employed participatory approaches to raise aware-
ness on aquatic subterranean fauna, in projects that also led
to the discovery of new species (amphipod genus Niphargus
and catfish Horaglanis populi) and new information on the dis-
tribution and abundance of subterranean species. Extension
and upscaling of such an initiative to other regions, countries
and continents can provide a highly effective tool to increase
societal awareness and advance science. Concurrently, the in-
corporation of local indigenous knowledge into ecological sci-
ence harbours enormous potential to increase the efficacy of
conservation and management strategies (Ban et al., 2018). For
instance, by harnessing the power of local knowledge through
participatory science programs, the opportunity exists to build
up a database of active and inactive global spring locations
(Goodall, 2008). Such community-led monitoring programs
could also provide information about groundwater quality
(levels of eutrophication and contamination) and provide the
catalyst to building a groundswell of support for rehabilitating
and restoration of inactive springs to benefit surface and sub-

surface biodiversity.

5 | CONCLUSIONS

Water is the basis of life on Earth: by overlooking the ecological in-
tegrity of groundwater, we are threatening the long-term prospects
of entire ecosystems and ultimately of humanity itself. Too often,
conservation efforts consider groundwater as disjoint from the rest
of the components of the global water cycle, despite the multiple
functional interlinks between the subterranean, surface and atmos-
pheric realms. The application of the keystone ecosystem concept to
groundwater would enable breaking the conceptual and mechanistic
barriers still existing in water science and policy. We provide evi-
dence that almost two thirds of habitable global areas (74.9%) have
a medium to high level of ecological interactions with groundwater.
We also provide the first indication that groundwater biodiversity
and interconnections can represent an ecological estimator for
global surface biodiversity patterns. Given this foundation, conser-
vation and water resource policies are pivotal to assure the mainte-

nance of the essential ecosystem services provided by groundwater

110f21
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ecosystems worldwide. We argue that the overall benefits of this
approach extend beyond the dark underworld, allowing the preser-
vation of diverse terrestrial and aquatic ecosystems. This is urgent
for wise water management plans within the current climate change
scenario, considering that many regions across the globe are already
experiencing a water crisis.
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