3,472 research outputs found

    Mid-Infrared Observations of the Giant Planets

    Full text link
    The mid-infrared spectral region provides a unique window into the atmospheric temperature, chemistry, and dynamics of the giant planets. From more than a century of mid-infrared remote sensing, progressively clearer pictures of the composition and thermal structure of these atmospheres have emerged, along with a greater insight into the processes that shape them. Our knowledge of Jupiter and Saturn has benefitted from their proximity and relatively warm temperatures, while the details of colder and more distant Uranus and Neptune are limited, as these planets remain challenging targets. As the timeline of observations continues to grow, an understanding of the temporal and seasonal variability of the giant planets is beginning to develop, with promising new observations on the horizon.Comment: 49 pages (including a long bibliography), 20 figure

    Conjunctive query inseparability of OWL 2 QL TBoxes

    Get PDF
    The OWL2 profile OWL 2 QL, based on the DL-Lite family of description logics, is emerging as a major language for developing new ontologies and approximating the existing ones. Its main application is ontology based data access, where ontologies are used to provide background knowledge for answering queries over data. We investigate the corresponding notion of query inseparability (or equivalence) for OWL 2 QL ontologies and show that deciding query inseparability is PSpace-hard and in ExpTime. We give polynomial-time (incomplete) algorithms and demonstrate by experiments that they can be used for practical module extraction

    Module extraction via query inseparability in OWL 2 QL

    Get PDF
    We show that deciding conjunctive query inseparability for OWL 2 QL ontologies is PSpace-hard and in ExpTime. We give polynomial-time (incomplete) algorithms and demonstrate by experiments that they can be used for practical module extraction

    Susceptibility of Monte-Carlo Generated Projected Vortices

    Get PDF
    We determine the topological susceptibility from center projected vortices and demonstrate that the topological properties of the SU(2) Yang-Mills vacuum can be extracted from the vortex content. We eliminate spurious ultraviolet fluctuations by two different smoothing procedures. The extracted susceptibility is comparable to that obtained from full field configurations.Comment: 3 pages, 4 figures; Lattice2001(confinement

    Reductive Catalytic Fractionation of Corn Stover Lignin

    Get PDF
    Reductive catalytic fractionation (RCF) has emerged as an effective biomass pretreatment strategy to depolymerize lignin into tractable fragments in high yields. We investigate the RCF of corn stover, a highly abundant herbaceous feedstock, using carbon-supported Ru and Ni catalysts at 200 and 250 °C in methanol and, in the presence or absence of an acid cocatalyst (H₃PO₄ or an acidified carbon support). Three key performance variables were studied: (1) the effectiveness of lignin extraction as measured by the yield of lignin oil, (2) the yield of monomers in the lignin oil, and (3) the carbohydrate retention in the residual solids after RCF. The monomers included methyl coumarate/ferulate, propyl guaiacol/syringol, and ethyl guaiacol/syringol. The Ru and Ni catalysts performed similarly in terms of product distribution and monomer yields. The monomer yields increased monotonically as a function of time for both temperatures. At 6 h, monomer yields of 27.2 and 28.3% were obtained at 250 and 200 °C, respectively, with Ni/C. The addition of an acid cocatalysts to the Ni/C system increased monomer yields to 32% for acidified carbon and 38% for phosphoric acid at 200 °C. The monomer product distribution was dominated by methyl coumarate regardless of the use of the acid cocatalysts. The use of phosphoric acid at 200 °C or the high temperature condition without acid resulted in complete lignin extraction and partial sugar solubilization (up to 50%) thereby generating lignin oil yields that exceeded the theoretical limit. In contrast, using either Ni/C or Ni on acidified carbon at 200 °C resulted in moderate lignin oil yields of ca. 55%, with sugar retention values >90%. Notably, these sugars were amenable to enzymatic digestion, reaching conversions >90% at 96 h. Characterization studies on the lignin oils using two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance and gel permeation chromatrography revealed that soluble oligomers are formed via solvolysis, followed by further fragmentation on the catalyst surface via hydrogenolysis. Overall, the results show that clear trade-offs exist between the levels of lignin extraction, monomer yields, and carbohydrate retention in the residual solids for different RCF conditions of corn stover.National Science Foundation (U.S.) (1454299

    Potential Conservation Laws

    Full text link
    We prove that potential conservation laws have characteristics depending only on local variables if and only if they are induced by local conservation laws. Therefore, characteristics of pure potential conservation laws have to essentially depend on potential variables. This statement provides a significant generalization of results of the recent paper by Bluman, Cheviakov and Ivanova [J. Math. Phys., 2006, V.47, 113505]. Moreover, we present extensions to gauged potential systems, Abelian and general coverings and general foliated systems of differential equations. An example illustrating possible applications of proved statements is considered. A special version of the Hadamard lemma for fiber bundles and the notions of weighted jet spaces are proposed as new tools for the investigation of potential conservation laws.Comment: 36 pages, extended versio

    Making the most of interference : speckle metrology and its application to cold atoms

    Get PDF
    Speckle patterns result from the interference of multiple reflections in disordered media. This is regarded as a randomization process which destroys information contained within the initial light beam and is deleterious to many optical systems. Indeed, many engineers study speckle to remove its effect. Intriguingly however, the processes that produce the speckle are entirely linear, and there is growing recognition that this complex pattern is rich in useful information on both the incident laser source and the environment, with startling potential uses. We will demonstrate our recent results [1], which show that the speckle pattern produced by light propagation in an integrating sphere can be used as a sensitive wavemeter, with a resolution below 1fm. Moreover, this can be used to stabilize the wavelength of a laser on a timescale and to a stability applicable for laser cooling of cold atoms. Reference: [1] N. K. Metzger, et al., “Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization”, Nature Communications 8, 15610 (2017)PostprintNon peer reviewe
    corecore