11,066 research outputs found
Energy Density-Flux Correlations in an Unusual Quantum State and in the Vacuum
In this paper we consider the question of the degree to which negative and
positive energy are intertwined. We examine in more detail a previously studied
quantum state of the massless minimally coupled scalar field, which we call a
``Helfer state''. This is a state in which the energy density can be made
arbitrarily negative over an arbitrarily large region of space, but only at one
instant in time. In the Helfer state, the negative energy density is
accompanied by rapidly time-varying energy fluxes. It is the latter feature
which allows the quantum inequalities, bounds which restrict the magnitude and
duration of negative energy, to hold for this class of states. An observer who
initially passes through the negative energy region will quickly encounter
fluxes of positive energy which subsequently enter the region. We examine in
detail the correlation between the energy density and flux in the Helfer state
in terms of their expectation values. We then study the correlation function
between energy density and flux in the Minkowski vacuum state, for a massless
minimally coupled scalar field in both two and four dimensions. In this latter
analysis we examine correlation functions rather than expectation values.
Remarkably, we see qualitatively similar behavior to that in the Helfer state.
More specifically, an initial negative energy vacuum fluctuation in some region
of space is correlated with a subsequent flux fluctuation of positive energy
into the region. We speculate that the mechanism which ensures that the quantum
inequalities hold in the Helfer state, as well as in other quantum states
associated with negative energy, is, at least in some sense, already
``encoded'' in the fluctuations of the vacuum.Comment: 21 pages, 7 figures; published version with typos corrected and one
added referenc
Wrapping an adhesive sphere with a sheet
We study the adhesion of an elastic sheet on a rigid spherical substrate.
Gauss'Theorema Egregium shows that this operation necessarily generates metric
distortions (i.e. stretching) as well as bending. As a result, a large variety
of contact patterns ranging from simple disks to complex branched shapes are
observed as a function of both geometrical and material properties. We describe
these different morphologies as a function of two non-dimensional parameters
comparing respectively bending and stretching energies to adhesion. A complete
configuration diagram is finally proposed
Implementation of the Multiple Point Principle in the Two-Higgs Doublet Model of type II
The multiple point principle (MPP) is applied to the non--supersymmetric
two-Higgs doublet extension of the Standard Model (SM). The existence of a
large set of degenerate vacua at some high energy scale caused by the MPP
results in a few relations between Higgs self-coupling constants which can be
examined at future colliders. The numerical analysis reveals that these MPP
conditions constrain the mass of the SM--like Higgs boson to lie below 180 GeV
for a wide set of MPP scales and .Comment: 26 pages, 3 figures, some minor changes to the tex
Graphene-based one-dimensional photonic crystal
A novel type of one-dimensional (1D) photonic crystal formed by the array of
periodically located stacks of alternating graphene and dielectric stripes
embedded into a background dielectric medium is proposed. The wave equation for
the electromagnetic wave propagating in such structure solved in the framework
of the Kronig-Penney model. The frequency band structure of 1D graphene-based
photonic crystal is obtained analytically as a function of the filling factor
and the thickness of the dielectric between graphene stripes. The photonic
frequency corresponding to the electromagnetic wave localized by the defect of
photonic crystal formed by the extra dielectric placed on the place of the
stack of alternating graphene and dielectric stripes is obtained.Comment: 8 pages, 2 figure
Electrostatics of Gapped and Finite Surface Electrodes
We present approximate methods for calculating the three-dimensional electric
potentials of finite surface electrodes including gaps between electrodes, and
estimate the effects of finite electrode thickness and an underlying dielectric
substrate. As an example we optimize a radio-frequency surface-electrode ring
ion trap, and find that each of these factors reduces the trapping secular
frequencies by less than 5% in realistic situations. This small magnitude
validates the usual assumption of neglecting the influences of gaps between
electrodes and finite electrode extent.Comment: 9 pages, 9 figures (minor changes
Binary Black-Hole Mergers in Magnetized Disks: Simulations in Full General Relativity
We present results from the first fully general relativistic,
magnetohydrodynamic (GRMHD) simulations of an equal-mass black hole binary
(BHBH) in a magnetized, circumbinary accretion disk. We simulate both the pre
and post-decoupling phases of a BHBH-disk system and both "cooling" and
"no-cooling" gas flows. Prior to decoupling, the competition between the binary
tidal torques and the effective viscous torques due to MHD turbulence depletes
the disk interior to the binary orbit. However, it also induces a two-stream
accretion flow and mildly relativistic polar outflows from the BHs. Following
decoupling, but before gas fills the low-density "hollow" surrounding the
remnant, the accretion rate is reduced, while there is a prompt electromagnetic
(EM) luminosity enhancement following merger due to shock heating and accretion
onto the spinning BH remnant. This investigation, though preliminary, previews
more detailed GRMHD simulations we plan to perform in anticipation of future,
simultaneous detections of gravitational and EM radiation from a merging
BHBH-disk system.Comment: 5 pages, 5 figure
Cooling of young stars growing by disk accretion
In the initial formation stages young stars must acquire a significant
fraction of their mass by accretion from a circumstellar disk that forms in the
center of a collapsing protostellar cloud. Throughout this period mass
accretion rates through the disk can reach 10^{-6}-10^{-5} M_Sun/yr leading to
substantial energy release in the vicinity of stellar surface. We study the
impact of irradiation of the stellar surface produced by the hot inner disk on
properties of accreting fully convective low-mass stars, and also look at
objects such as young brown dwarfs and giant planets. At high accretion rates
irradiation raises the surface temperature of the equatorial region above the
photospheric temperature T_0 that a star would have in the absence of
accretion. The high-latitude (polar) parts of the stellar surface, where disk
irradiation is weak, preserve their temperature at the level of T_0. In
strongly irradiated regions an almost isothermal outer radiative zone forms on
top of the fully convective interior, leading to the suppression of the local
internal cooling flux derived from stellar contraction (similar suppression
occurs in irradiated ``hot Jupiters''). Properties of this radiative zone
likely determine the amount of thermal energy that gets advected into the
convective interior of the star. Total intrinsic luminosity integrated over the
whole stellar surface is reduced compared to the non-accreting case, by up to a
factor of several in some systems (young brown dwarfs, stars in quasar disks,
forming giants planets), potentially leading to the retardation of stellar
contraction. Stars and brown dwarfs irradiated by their disks tend to lose
energy predominantly through their cool polar regions while young giant planets
accreting through the disk cool through their whole surface.Comment: 14 pages, 6 figures, submitted to Ap
Sensitive imaging of electromagnetic fields with paramagnetic polar molecules
We propose a method for sensitive parallel detection of low-frequency
electromagnetic fields based on the fine structure interactions in paramagnetic
polar molecules. Compared to the recently implemented scheme employing
ultracold Rb atoms [B{\"o}hi \textit{et al.}, Appl. Phys. Lett.
\textbf{97}, 051101 (2010)], the technique based on molecules offers a 100-fold
higher sensitivity, the possibility to measure both the electric and magnetic
field components, and a probe of a wide range of frequencies from the dc limit
to the THz regime
Electrical plasmon detection in graphene waveguides
We present a simple device architecture that allows all-electrical detection
of plasmons in a graphene waveguide. The key principle of our electrical
plasmon detection scheme is the non-linear nature of the hydrodynamic equations
of motion that describe transport in graphene at room temperature and in a wide
range of carrier densities. These non-linearities yield a dc voltage in
response to the oscillating field of a propagating plasmon. For illustrative
purposes, we calculate the dc voltage arising from the propagation of the
lowest-energy modes in a fully analytical fashion. Our device architecture for
all-electrical plasmon detection paves the way for the integration of graphene
plasmonic waveguides in electronic circuits.Comment: 9 pages, 3 figure
Proceedings of the NASA Microbiology Workshop
Long-term spaceflight is characterized by extraordinary challenges to maintain the life-supporting instrumentation free from microbial contamination and the crew healthy. The methodology currently employed for microbial monitoring in space stations or short spaceflights within the orbit of Earth have been instrumental in safeguarding the success of the missions, but suffers certain shortcomings that are critical for long spaceflights. This workshop addressed current practices and methodologies for microbial monitoring in space systems, and identified and discussed promising alternative methodologies and cutting-edge technologies for pursuit in the microbial monitoring that hold promise for supporting future NASA long-duration space missions
- …