17 research outputs found

    E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis.

    Get PDF
    The multifunctional protein E4 transcription factor 1 (E4F1) is an essential regulator of epidermal stem cell (ESC) maintenance. Here, we found that E4F1 transcriptionally regulates a metabolic program involved in pyruvate metabolism that is required to maintain skin homeostasis. E4F1 deficiency in basal keratinocytes resulted in deregulated expression of dihydrolipoamide acetyltransferase (Dlat), a gene encoding the E2 subunit of the mitochondrial pyruvate dehydrogenase (PDH) complex. Accordingly, E4f1 knock-out (KO) keratinocytes exhibited impaired PDH activity and a redirection of the glycolytic flux toward lactate production. The metabolic reprogramming of E4f1 KO keratinocytes associated with remodeling of their microenvironment and alterations of the basement membrane, led to ESC mislocalization and exhaustion of the ESC pool. ShRNA-mediated depletion of Dlat in primary keratinocytes recapitulated defects observed upon E4f1 inactivation, including increased lactate secretion, enhanced activity of extracellular matrix remodeling enzymes, and impaired clonogenic potential. Altogether, our data reveal a central role for Dlat in the metabolic program regulated by E4F1 in basal keratinocytes and illustrate the importance of PDH activity in skin homeostasis

    The Mdm2 oncogene : new functions and implications in serine metabolism

    No full text
    L'oncoprotéine MDM2 est reconnue comme un régulateur négatif majeur du suppresseur de tumeur p53, mais plus de preuves indiquent que ses activités oncogéniques vont au-delà de p53. Ici, nous montrons que MDM2 est recruté à la chromatine indépendamment de p53 pour réguler un programme transcriptionnel complexe impliqué dans le métabolisme des acides aminés et l'homéostasie redox. L'identification des gènes cibles de MDM2 au niveau du génome entier met en évidence un rôle important pour les facteurs de transcription ATF3/4 dans le recrutement de MDM2 à la chromatine. Ce recrutement de MDM2 à la chromatine est un processus étroitement régulé qui se produit lors d'un stress oxydatif et lors d'une déprivation en serine/glycine et est modulé par la pyruvate kinase M2 (PKM2) qui est une enzyme métabolique. La déplétion de la protéine MDM2 endogène dans des cellules déficientes en p53 altère le métabolisme sérine/glycine, le rapport NAD+/NADH et le recyclage de la glutathion (GSH), important leurs état redox et leurs potentiel tumorigènique. Nos données illustrent une fonction précédemment insoupçonnée de MDM2 à la chromatine impliquée dans le métabolisme des cellules cancéreuses.The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD+/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatinbound MDM2 in cancer cell metabolism

    L'oncogène Mdm2 : nouvelles fonctions et implications dans le métabolisme des cellules cancéreuses

    No full text
    The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD+/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatinbound MDM2 in cancer cell metabolism.L'oncoprotéine MDM2 est reconnue comme un régulateur négatif majeur du suppresseur de tumeur p53, mais plus de preuves indiquent que ses activités oncogéniques vont au-delà de p53. Ici, nous montrons que MDM2 est recruté à la chromatine indépendamment de p53 pour réguler un programme transcriptionnel complexe impliqué dans le métabolisme des acides aminés et l'homéostasie redox. L'identification des gènes cibles de MDM2 au niveau du génome entier met en évidence un rôle important pour les facteurs de transcription ATF3/4 dans le recrutement de MDM2 à la chromatine. Ce recrutement de MDM2 à la chromatine est un processus étroitement régulé qui se produit lors d'un stress oxydatif et lors d'une déprivation en serine/glycine et est modulé par la pyruvate kinase M2 (PKM2) qui est une enzyme métabolique. La déplétion de la protéine MDM2 endogène dans des cellules déficientes en p53 altère le métabolisme sérine/glycine, le rapport NAD+/NADH et le recyclage de la glutathion (GSH), important leurs état redox et leurs potentiel tumorigènique. Nos données illustrent une fonction précédemment insoupçonnée de MDM2 à la chromatine impliquée dans le métabolisme des cellules cancéreuses

    Chromatin-bound MDM2, a new player in metabolism

    No full text
    International audienceThe oncoprotein MDM2 is recognized as a major negative regulator of the p53 tumor suppressor but growing evidence indicates that its oncogenic activities extend beyond p53. We show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis

    Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer

    Get PDF
    International audienceBACKGROUND:The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. However, converging evidence indicates that p53 also plays a major role in metabolism in both normal and cancer cells.SCOPE OF REVIEW:We provide an overview of the current knowledge on the metabolic activities of wild type (WT) p53 and highlight some of the mechanisms by which p53 contributes to whole body energy homeostasis. We will also pinpoint some evidences suggesting that deregulation of p53-associated metabolic activities leads to human pathologies beyond cancer, including obesity, diabetes, liver, and cardiovascular diseases.MAJOR CONCLUSIONS:p53 is activated when cells are metabolically challenged but the origin, duration, and intensity of these stresses will dictate the outcome of the p53 response. p53 plays pivotal roles both upstream and downstream of several key metabolic regulators and is involved in multiple feedback-loops that ensure proper cellular homeostasis. The physiological roles of p53 in metabolism involve complex mechanisms of regulation implicating both cell autonomous effects as well as autocrine loops. However, the mechanisms by which p53 coordinates metabolism at the organismal level remain poorly understood. Perturbations of p53-regulated metabolic activities contribute to various metabolic disorders and are pivotal during cancer progression
    corecore