1,972 research outputs found

    Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector

    Full text link
    The extreme radiation dose received by vertex detectors at the Large Hadron Collider dictates stringent requirements on their cooling systems. To be robust against radiation damage, sensors should be maintained below -20 degree C and at the same time, the considerable heat load generated in the readout chips and the sensors must be removed. Evaporative CO2 cooling using microchannels etched in a silicon plane in thermal contact with the readout chips is an attractive option. In this paper, we present the first results of microchannel prototypes with circulating, two-phase CO2 and compare them to simulations. We also discuss a practical design of upgraded VELO detector for the LHCb experiment employing this approach.Comment: 12 page

    Dynamic control strategies for a solar-ORC system using first-law dynamic and data-driven machine learning models

    Get PDF
    In this study, we developed and assessed the potential of dynamic control strategies for a domestic scale 1-kW solar thermal power system based on a non-recuperated organic Rankine cycle (ORC) engine coupled to a solar energy system. Such solar-driven systems suffer from part-load performance deterioration due to diurnal and inter-seasonal fluctuations in solar irradiance and ambient temperature. Real-time control strategies for adjusting the operating parameters of these systems have shown great potential to optimise their transient response to time-varying conditions, thus allowing significant gains in the power output delivered by the system. Dynamic model predictive control strategies rely on the development of computationally efficient, fast-solving models. In contrast, traditional physics-based dynamic process models are often too complex to be used for real-time controls. Machine learning techniques (MLTs), especially deep learning artificial neural networks (ANN), have been applied successfully for controlling and optimising nonlinear dynamic systems. In this study, the solar system was controlled using a fuzzy logic controller with optimised decision parameters for maximum solar energy absorption. For the sake of obtaining the optimal ORC thermal efficiency at any instantaneous time, particularly during part-load operation, the first-law ORC model was first replaced by a fast-solving feedforward network model, which was then integrated with a multi-objective genetic algorithm, such that the optimal ORC operating parameters can be obtained. Despite the fact that the feedforward network model was trained using steady-state ORC performance data, it showed comparable results compared with the first-principle model in the dynamic context, with a mean absolute error of 3.3 percent for power prediction and 0.186 percentage points for efficiency prediction

    Integration of New Technologies and Alternative Methods in Laboratory-Based Scenarios

    Get PDF
    In this study, we report a preliminary requirements analysis to recognize needs and possibilities for integrating new technologies and methods for lab-based learning in the field of Industry 4.0 and Internet of Things. To this aim, different scenarios, such as real, remote and virtual labs, are considered to be addressable within an integrated learning environment that focuses on alternative methods (i.e. Serious Games, Self-Regulated and Collaborative Learning) and new technologies (i.e. Open Badges, Mixed Reality and Learning Analytics). To support the design of the laboratory-based learning environment, qualitative interviews were conducted with both expert lecturers and relevant students in the field of engineering, to provide complementary perspectives. These interviews were carried out to analyze the requirements, and to identify possible benefits that relevant stakeholders expect by using these teaching and learning methods and technologies. A qualitative content analysis has been started on the interviews to define which is the perception of the new technologies and teaching methods. The different points of view about technologies and methods coming from expert lecturers’ and relevant students’ interviews are provided

    RFID technology for blood tracking: An experimental approach for benchmarking different devices

    Get PDF
    OBJECTIVE: The objective of the paper is to design a testing protocol to measure performances of RFID devices applied to blood supply chain, and to implement an experimental campaign in order to collect performance data. The protocol matches operational conditions in blood supply chain and is particularly tailored to some critical processes, which can benefit from RFID adoption. The paper thus strives at benchmarking performances of inlays, fixed and handheld RFID readers, when deployed in the blood supply chain processes. DESIGN, METHODOLOGY, APPROACH: The adopted testing protocol enables the assessment of performances of RFID devices in processes of the blood supply chain, since it has been developed peculiarly to emulate critical logistics processes. The testing protocol has been designed jointly with hospital personnel involved in every day operations on blood bags and tubes in order to improve processes, in terms of safety and reliability. The testing protocol has been applied to 3 inlays, 2 fixed readers, 1 mobile handheld in 3 logistics processes, all operating according to UHF EPC class 1 gen 2 protocols and ETSI regulations. We measured and compared read rates, accuracies and read times. FINDINGS: The results of the test give a direct insight of performances to be expected from different RFID devices when deployed in a real-world environment. Therefore, it is possible to give answers to how a specific piece of hardware - such as an inlay or a reader - performs, and how it can be effectively used to improve security of patients in healthcare. At the same time, researchers focusing on the business process reengineering of blood supply chain can assess the technical feasibility of the RFID-reengineered logistics processes in order to improve the safety of end users

    Role of dispersion in pulse emission from a sliding-frequency fiber laser

    Get PDF
    6openopenRomagnoli, M.; Wabnitz, Stefan; Franco, P.; Midrio, M.; Bossalini, L.; Fontana, F.M., Romagnoli; Wabnitz, Stefan; P., Franco; M., Midrio; L., Bossalini; F., Fontan
    • …
    corecore