
938 J. Opt. Soc. Am. B/Vol. 12, No. 5 /May 1995 Romagnoli et al.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Brescia
Role of dispersion in pulse emission
from a sliding-frequency fiber laser

M. Romagnoli and S. Wabnitz

Fondazione Ugo Bordoni, via B. Castiglione 59, 00142 Roma, Italy

P. Franco and M. Midrio

Dipartimento di Elettronica e Informatica, Università di Padova, via G. Gradenigo 6yA, 35131 Padova, Italy
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We present an experimental and theoretical investigation of the role of group-velocity dispersion in the
generation of picosecond pulses from a sliding-frequency fiber loop laser.
1. INTRODUCTION
The technique of generation of short optical pulses by
means of a sliding-frequency (or frequency-shifted feed-
back) laser cavity1 was recently successfully applied
to neodymium2 and erbium3–5 fiber laser systems. A
schematic view of the various elements in a sliding-
frequency fiber loop laser is shown in Fig. 1.
Continuous-frequency sliding is achieved by an acousto-
optic shifter like the one that is depicted in Fig. 2.
In a fiber laser cavity with anomalous group-velocity
dispersion (GVD), under certain conditions the propa-
gation of the circulating pulses in a sliding-frequency
fiber laser (SFFL) may be well described in terms of
a perturbed nonlinear Schrödinger (NLS) equation.6

In fact, it was pointed out by Kodama et al.6 that in
this case the pulse formation mechanism in a SFFL is
closely related to the sliding-filter method that has been
proposed and demonstrated by Mollenauer et al.7,8 for
the stabilization of long-distance soliton transmission
systems. Pulse stability in the laser configuration is due
to the combination of a continuous-frequency shifter and
a filter. After a few transits the continuous-frequency
shifter removes low-intensity noise and continuous-wave
radiation from the filter bandpass and hence from the
cavity. But a soliton survives in the cavity because
it remains stably trapped by the filter at a given fre-
quency. The dynamics of the noise-induced start-up of
frequency-shifted feedback fiber lasers was numerically
studied by Sabert and Brinkmeyer.2,4 In the NLS limit
discussed above, one may apply soliton perturbation
theory to obtain a simple analytical expression for the
steady-state pulse duration from the SFFL.3,6 Based on
this analysis, one postulates that the laser pulse’s time
width is uniquely fixed by the frequency-shifting rate
and the filter bandwidth. In other words, the duration
of the output pulse is independent, for example, of the
magnitude of the cavity dispersion and the cavity length.
0740-3224/95/050938-07$06.00
The preliminary experimental results in Refs. 3 and 5
appear to agree quite well with this hypothesis.

Still to be investigated is the role of the average cav-
ity GVD on the generation and stability of pulses from
a SFFL in cases in which the operating wavelength is
close to zero or takes positive values. Based on previ-
ous research on pulse formation in passively mode-locked
laser systems,9–12 in this paper we study both theoretically
and experimentally the effects of the sign and the magni-
tude of the cavity GVD on the pulse formation process
in a SFFL. In particular, in agreement with the re-
sults of Refs. 2 and 4, we show here that stable pulses
may be supported in a SFFL as a result of the interplay
among bandwidth-limited amplification, frequency shift-
ing, self-phase modulation, and fast saturable absorption
even with zero or positive GVD. Moreover, by exploiting
the compression of the chirped pulses that are generated
in the SFFL with a positive cavity GVD by means of an
anomalous GVD output fiber lead, we obtain the emis-
sion of near-transform-limited 400-fs pulses at a repeti-
tion rate that is fixed by a the round-trip group delay in
the loop.

2. EXACT SOLUTIONS
The averaged propagation equation for the field envelope
u with mean frequency v0 in the cavity reads, in dimen-
sionless units, as

i
≠u
≠Z

2
D
2

≠2u
≠T 2 2 ib

≠2u
≠T 2 2 idu 1 s1 1 igdjuj2u

2 isjuj4u 1 aTu  0 , (1)

where D  b2yjbrj is the average cavity GVD b2 divided
by the absolute value of a reference value of GVD, say,
br . In addition, d  g 2 l is the difference between
gain and loss in the loop, b is the average gain disper-
sion, g and s are the nonlinear gain and its saturation,
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Fig. 1. Schematic of the laser. Three different fibers (A, B,
C) were used to control the average GVD of the fiber loop:
A, LA  110 m, b2  220 ps2ykm; B, LB  58 m, b2  0
at 1550 nm; and C, LC  40 m, b2  183 ps2ykm. AOM,
acousto-optical modulator.

Fig. 2. Schematic of the acousto-optic modulator and filter
(AOMF): s1 unidirectional transducer, s2 polarization beam
splitter, s3 acoustic waveguide, s4 Ti-indiffused region, s5 acoustic
absorber.

respectively (these terms represent the effect of a fast
saturable absorption mechanism in the cavity9), and a

is proportional to the frequency-sliding rate. Moreover,
T  st 2 zyvgdyt0 (t0 is an arbitrary reference time unit)
and Z  zyz0 (z0  t0

2yjbr j is the dispersion length). We
denote the group velocity vg. In Eq. (1) we may take into
account the slow saturation of the active fiber medium
by simply writing g  g0ys1 1 PyPsd, where P is the
average power in the cavity and Ps is the saturation
power.2,9,13 A detailed discussion of the stabilizing effect
of slow gain saturation on the propagation pulses in fiber
lasers was presented in Ref. 13. Here we are interested
mainly in investigating the pulse stabilization that origi-
nates from a continuous-frequency sliding and/or a fast
equivalent saturable-absorption mechanism; therefore in
what follows we neglect analysis of the role of slow gain
saturation.

In real units, the frequency-shifting rate a and the
filter dispersion coefficient b read as

a 
Dft0

3

zlbr

, b 
2

DV2zlbr

, (2)

where Df and DV are the acousto-optic modulator angu-
lar frequency shift and the filter bandwidth (2p THz), re-
spectively. Moreover, t0 is expressed in picoseconds, zl is
the loop length (here this is expressed in kilometers, and
br is given in square picoseconds per kilometer.

As we shall see, the main role of nonlinear gain satu-
ration and of frequency sliding is in the stabilization of
the pulses that circulate through the cavity. In fact, it
has been shown that the essential ingredients for the for-
mation of time-localized pulses in a physical system that
is described by a generalized Ginzburg–Landau equation
of the form of Eq. (1) are nonlinearity and bandwidth-
limited amplification, irrespective of the sign of GVD.14,15

Neglecting at first for simplicity higher-order nonlinear
gain saturation and frequency shifting, that is, with s 
a  0, one obtains an exact solution for Eq. (1) in the
form11,14

u  AfsechsTyrdg12in expsiGZd , (3)

where

n  2a 6
p

a2 1 2 ,

a 
3sgb 1 Dy2d

b 2 Dgy2
,

r2  sbn2 2 b 1 nDdyd ,

A2  sDn2y2 2 D 2 3nbdyr2 ,

G  sDn2y2 2 Dy2 2 2bndyr2 . (4)

Figures 3–8 illustrate the dependence of the pulse
width r, the spectral bandwidth j s

p
1 1 n2yrd, and

the amplitude A of the solitary-wave solution [Eqs. (3)
and (4)] on the dispersion coefficient D. In Figs. 3–5 the
linear excess gain d . 0, whereas in Figs. 6–8 d , 0. In
Figs. 3–5 we set b  3d  0.15 and we varied the nonlin-
ear gain (or saturable loss) coefficient from g  0 (dashed
curves) to g  20.035 (solid curves) and g  20.07 (dot-
ted–dashed curves). As can be seen from Fig. 3, the
presence of a finite nonlinear gain reduces the pulse width
r. This decrease in the pulse duration is more effective
whenever the absolute value of D grows larger. Note
that without nonlinear gain the pulse width is almost
constant (and close to 1) in the anomalous dispersion re-
gion (i.e., with D , 0), whereas the pulse duration grows
linearly with D in the normal dispersion case. Figure 4
illustrates the dependence of the spectral width of the
pulses as in Fig. 3 on the dispersion parameter D. As
can be seen, in the anomalous GVD region the pulse
remains close to a transform-limited NLS equation soli-
ton, whereas with normal GVD the pulse’s spectral width
rapidly increases, although the nonlinear gain introduces
some bandwidth reduction. Figure 5 shows the depen-
dence on D of the pulse amplitude A. The amplitude
is nearly constant in the normal GVD regime, whereas
A rapidly diverges for negative GVD whenever the non-
linear gain grows larger (and correspondingly the pulse
width is compressed; see Fig. 3).

On the other hand, Fig. 6 was obtained with negative
excess gain d. Here b  0.15, d  20.02, and g  20.2
(solid curve), g  20.4 (dashed curve), and g  20.8
(dotted–dashed curve). As can be seen, for g less than
approximately 0.3 there is a range of dispersion values
around D  0 where there is no localized solution of
Eq. (1) of the type of Eqs. (3) and (4). Moreover, progres-
sively larger absolute values of the nonlinear gain coef-
ficient lead to longer pulse durations. In contrast with
the case d . 0, the pulse width also increases linearly in
the anomalous dispersion regime as the absolute value
of D grows larger. Figure 7 displays the pulse spectral
widths j that are associated with the curves in Fig. 6:
As can be seen, even for different values of g the behavior
of the temporal and spectral widths is similar. Finally,
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Fig. 3. Theoretical dependence of pulse width on the disper-
sion coefficient D for b  3d  0.15 and g  0 (solid curve),
g  20.035 (dashed curve), and g  20.07 (dotted–dashed
curve).

Fig. 4. Pulse spectral width j 
p

1 1 n2yr versus cavity dis-
persion D for the same parameters as in Fig. 3.

Fig. 5. Pulse amplitude A versus dispersion D for the param-
eters of Fig. 3.

the amplitude A variation curves in Fig. 8 show that the
vanishing pulse widths in Fig. 6 correspond to the limit
of infinitely intense pulses, which is indicative of the col-
lapse mechanism that is present in the solutions of the
Ginzburg–Landau equation (1). Clearly, in a real laser
system pulse collapse is prevented by nonlinear gain satu-
ration terms like that in Eq. (1).

In the normal dispersion regime the pulses [Eqs. (3)
and (4)] are strongly chirped; that is, their phase rapidly
rotates along the pulse profile. For example, the solid
curve in Fig. 9 shows the variation of the instantaneous
frequency C8dfargsudgydT  dsn lnhcoshsTyrdgjydT
across the pulse amplitude (dashed curve) for d  20.02,
b  0.16, g  20.2, and D  1. As can be seen, the
frequency change or chirp is almost linear in the central
region of the pulse. As will be experimentally demon-
strated later in this paper, Fig. 9 shows that pulse com-
pression could be achieved by propagation of this pulse
through an anomalous dispersive fiber.

A key issue in the physical meaning of the solution
[Eqs. (3) and (4)] is its stability on propagation. In par-

Fig. 6. Same as in Fig. 3 for b  0.16, d  20.02, and g  20.2
(solid curve), g  20.4 (dashed curve), and g  20.8 (dot-
ted–dashed curve).

Fig. 7. Same as in Fig. 4 for the parameters of Fig. 6.

Fig. 8. Same as in Fig. 5 for the parameters of Fig. 6.

Fig. 9. Theoretical pulse amplitude juj (dashed curve) and its
chirp C (solid curve) versus time T in the normal dispersion
regime sD  11d.
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ticular, it is quite clear that, whenever the excess gain
d . 0, the low-intensity background is unstable and there-
fore the solitary wave [Eqs. (3) and (4)] will eventually
decay owing to its interaction with the exponentially am-
plified noise and radiation. On the other hand, it can be
shown that this solution with d , 0 is by itself unstable.16

Therefore for describing the pulsed operation of the laser
it will be essential to introduce some stabilizing elements,
such as higher-order nonlinear gain saturation terms and
frequency sliding. We discuss the stability issue fur-
ther in the following sections with the help of numerical
simulations.

3. NUMERICAL RESULTS
We performed numerical simulations (by the split-step
method) of pulse generation and propagation in an ac-
tive fiber ring cavity of the type that was employed in
the experiment (see Fig. 1). We assumed that nonlinear
pulse propagation in the dispersive fiber span could be
described by the lossy NLS equation

≠ZU 2
i
2

≠TT U 2 ijU j2U  2GU , (5)

where G  gz0 is the dimensionless fiber loss coefficient
[g (m–1) is the fiber loss in real units]. We assumed
for simplicity that the length of the active fiber, say,
za ,, zp, where zp is the length of the passive fiber span.
Therefore we set the total dimensionless length of the
laser loop equal to Zl  zlyz0 . zpyz0. The fiber loss
factor exps2GZpd is overcompensated by the amplifier
gain expsGd, i.e., the excess gain d  GyZp 2 G . 0.
We assumed that the spectral transfer function of the
filter could be well approximated by the Fabry–Perot
function H sV  v 2 v0d, where v0 coincides with the
center frequency of the filter and

H sVd 8
1

s1 1 2iVyBd
, (6)

where B is the filter bandwidth. The frequency shift that
is obtained from the AOM may be simply represented by
the transfer function in the time domain:

SsT d  C expsia0T d , (7)

where a0 is the acoustic drive frequency. Note that the
diffraction efficiency Id 8 jCj2 # 1 gives the fraction of
energy that is transferred by the AOM into the frequency-
shifted beam. By assuming that this extra loss which is
due to the AOM is compensated by the active fiber, we
may for simplicity set C  1. Finally, we have included
in the simulations the presence of a fast saturable absorp-
tion mechanism (resulting, for example, from nonlinear
polarization rotation plus polarization-dependent losses)
by multiplying the field (after the amplifier) by the tem-
poral transfer function

GsT d  expf2Gsys1 1 jU j2yIsdg . (8)

For studying the stability of the soliton generation in
the SFFL we took the initial condition for Eq. (5) of the
form

U sT , Z  0d  a0 sechsTyAd . (9)
For example, we set A  5 and a0  1. In order
to fit the experimental results, in the simulations we
chose the following parameters. The center wavelength
of the filter was l0  2pcyv0, the loop length was zl 
70 m, the fiber loss was 0.24 dBykm, the filter bandwidth
was equal to 2.3 nm (or 290 GHz), the AOM frequency
shift was 170 MHz, and the average loop dispersion was
b2  153 ps2ykm. By taking the reference time width
t0  1.4 ps, one obtains the dimensionless filter band-
width B  2.5 in Eq. (6); the loop length Zl  zlyz0  2,
the average frequency shifting rate [see Eq. (2)] is a 
a0z0yzl  7.9 3 1024, whereas the average filter band-
width in Eq. (2) is b  0.167 (note that b is indepen-
dent of the definition of t0). With these parameters we
found that an input condition of the form of Eq. (9) evolved
toward a steady-state pulse with a full width at half-
maximum of 17 ps (see Fig. 10). In the simulations we
found that, given the reduced stabilizing effect of the
small frequency shift rate a, it was impossible to sup-
press the eventual growth of radiation waves with a posi-
tive average excess gain d. Therefore for the stability of
the laser’s steady state it was necessary to take d , 0 and
to include a fast saturable absorption mechanism of the
type of Eq. (8). We set the gain coefficient of the active
fiber G  0.2, whereas Gs  0.22 and Is  0.25 in Eq. (8),
so that the low-power average excess loss is d  20.01.
As can be seen from the contour plot of the pulse intensity
of Fig. 11, the steady-state pulse that forms in the cavity
is stable, and no growth of radiative waves is observed.
Note from Figs. 10 and 11 that the pulse is slightly
asymmetric, that is, the leading edge is steeper than the
trailing edge. On the other hand, the asymmetric pulse
spectrum in Fig. 10 shows that the high-frequency side of
the nearly flat-topped spectrum falls down more sharply
than the low-frequency side. We verified that this asym-
metry does not change if the sign of the AOM frequency

Fig. 10. Calculated intensity profile and spectrum of the
steady-state pulses in the cavity in the normal dispersion regime
and with fast saturable absorption.
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Fig. 11. Contour plot of the intensity of the steady-state pulse
of Fig. 10.

Fig. 12. Same as in Fig. 11 but with the sign of GVD reversed.

shift is inverted. Therefore the observed pulse asymme-
try results from the third-order dispersion that is asso-
ciated with the complex filter transfer function [Eq. (6)].
As we shall see in Section 4, the numerically predicted
spectral asymmetry is well reproduced by the experimen-
tal observations. Note that the spectrum of the highly
chirped pulse in Fig. 10 fills the entire bandwidth of the
filter.

Finally, Fig. 12 shows the contour plot of the field in-
tensity inside the laser, which is obtained for the same
set of parameters as in the case of Fig. 11 but with an in-
verted sign of the average GVD, that is, b2  253 ps2ykm.
As can be seen, in this case the initial pulse envelope
[Eq. (9)] splits into a train of four equal pulses of 2-ps
width. Therefore, by simply changing the sign of a rela-
tively high GVD, one still obtains a stable pulse from the
laser; however, the pulse width decreases approximately
nine times.

Figure 13 shows the intensity profile and the spectrum
of the stable steady-state pulses that are generated in
the normal dispersion regime with a larger value of the
averaged frequency-sliding rate a  20.2, the filter band-
width B  6, d  0.2, and Zl  0.0864. In this case, even
though d . 0, no saturable absorber was necessary be-
cause the stabilization of the cavity pulses was achieved
through the relatively large rate of frequency upshift-
ing from the AOM. In real units, the simulation that
appears in Fig. 13 corresponds, for example, to the av-
erage cavity dispersion b2  114 ps2ykm and the AOM
frequency shift of 820 MHz, whereas the filter width and
the cavity length are constant and equal to 2.3 nm and
70 m, respectively. Then the output pulse duration of
Fig. 13 is equal to 20 ps. One could also obtain the same
situation by decreasing the filter bandwidth to 1 nm,
with b2  174 ps2ykm and an AOM frequency shift of
356 MHz. In this case, the generated pulse duration
would be equal to 45 ps. Note that the center of mass
of the pulse spectrum in Fig. 13 is upshifted by the AOM
with respect to the center frequency of the filter V  0.

4. EXPERIMENT
In the SFFL the gain element was a 15-m-long erbium-
doped fiber that was pumped by a 70-mW 980-nm semi-
conductor laser (see Fig. 1). A polarization-insensitive
isolator ensured the unidirectionality of the cavity,
whereas we inserted polarization-dependent losses into
the ring cavity by placing a polarization controller before
a linear polarization. Continuous frequency shifting and
filtering were achieved by means of a single integrated op-
tics LiNbO3 component (see Fig. 2). The Mach–Zehnder
geometry of the device leads to shifting and filtering of the
light that is split (at point s2 in Fig. 2) in the orthogonal
TE and TM polarization directions. The phase-matching
condition of the coupling process between the acoustic
and the light waves leads to frequency shifts with oppo-
site signs for light that propagates in the two arms of the
AOMF. In the laser loop we placed the polarizer before
the AOMF, so that we fed light into a single arm of the
device (see Fig. 1). The length of the AOMF was equal
to half of the polarization beat length. This entails a
90-deg polarization rotation between the input and the
output of the AOMF. The transmission bandwidth of
the AOMF was 2.3 nm, whereas the central transmission
wavelength could be tuned in the range of 1525–1565 nm
by adjustment of the acoustic wave frequency from 177
to 172.5 MHz. The total length of the fiber loop, with
the exception of the dispersive nonlinear fiber span, was

Fig. 13. Same as in Fig. 10 without fast saturable absorption
and with a large frequency-shifting rate.
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Fig. 14. (a) Experimental autocorrelation and (b) spectrum at
the laser output. SH, second harmonic.

Fig. 15. Experimental dependence of laser pulse width
versus operating wavelength for an average cavity GVD
b2  215.3 ps2ykm (squares), b2  11 ps2ykm (triangles), and
b2  151.5 ps2ykm (circles).

26.5 m. The average chromatic dispersion of this part of
the cavity was positive and was b2  14 ps2ykm.

In order to investigate the role of the average cavity
dispersion in the characteristics of the emitted pulses, we
repeated the experiment with three different nonlinear
dispersive fiber spans. The first fiber, say, fiber A, was a
standard 110-m-long fiber with the anomalous dispersion
b2  220 ps2ykm. The second fiber (fiber B) was a
58-m-long dispersion-shifted fiber with b2  0 at
1550 nm. Finally, the third fiber (fiber C) was a 40-m-
long special-purpose fiber with a large positive dispersion
b2  183 ps2ykm.

Stable emission of picosecond pulses was observed in
any case as soon as the pump power was turned on. In
the normal dispersion regime the repetition rate of the
generated pulses coincided with the travel time in the cav-
ity. However, no adjustment between the acoustic drive
frequency and the laser repetition rate was necessary for
stable operation and self-starting of the laser,3,5 whereas
we could easily change the mean frequency of the output
pulses by tuning the central transmission wavelength of
the AOMF. The investigation of the temporal and spec-
tral characteristics of the output pulses was carried out
by means of an autocorrelator and an optical spectrum
analyzer. Figure 14 shows an example of the observed
autocorrelation trace and spectrum in the case of a posi-
tive GVD cavity, that is, with fiber C in the loop. The
measured time width of 19 ps corresponds, when we as-
sume for simplicity a symmetric hyperbolic secant pro-
file pulse, to a real pulse full width of 12.4 ps. On the
other hand, the width of the slightly asymmetrical flat-
topped spectrum coincides with the whole 2.3-nm filter
bandwidth.

Figure 15 displays the dependence of the SFFL out-
put pulse width on the mean wavelength with fiber A,
B, or C in the loop. With fiber A the average cavity
GVD was b2  215.3 ps2ykm, with fiber B the average
GVD was 11 ps2ykm (at the zero-dispersion wavelength
l  1550 nm), and with fiber C the average GVD was
151.5 ps2ykm. The values of the pulse widths that cor-
respond to the fibers A, B, and C are represented in
Fig. 15 by squares, triangles, and dots, respectively. In
each case, we adjusted the polarization controllers in the
cavity to obtain the maximum reduction in the duration
of the output pulses. As can be seen, the duration of the
pulses from the laser did not show significant changes
when the filter wavelength was tuned through the band-
width of the active fiber. On the other hand, the out-
put pulse width increased slightly when the cavity dis-
persion was varied from negative (squares) to zero (trian-
gles), whereas it nearly doubled with the highly positive
average cavity GVD (circles).

We made use of the temporal compression of the large
and nearly linear pulse chirps of the steady-state SFFL
pulses by means of an external fiber lead with anoma-
lous GVD. First we boosted the peak power of the pulses
from the laser by inserting an amplifier module provid-
ing 15 dBm of saturated power after the output coupler.
Subsequently we propagated the output pulses in a stan-

Fig. 16. (a) Autocorrelation and (b) spectrum of the compressed
pulses from the fiber tail. SH, second harmonic.
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dard (of the type of fiber A that we mentioned above)
anomalous dispersion fiber lead of length equal to 125 m.
Figure 16 shows the autocorrelation and the spectrum of
the resulting time-compressed pulses. Their measured
temporal width was 370 fs, which, when combined with
its nearly Gaussian spectrum, leads to a nearly transform-
limited time–bandwidth product of 0.41.

5. CONCLUSIONS
In conclusion, in this research we have analyzed the role
of group-velocity dispersion in the characteristics (dura-
tion, stability) of the pulses that are generated from a
fiber ring laser with a filter and a continuous-frequency
shift from an acousto-optical modulator. We have shown
that the interplay of nonlinearity and bandwidth-limited
amplification may lead to the formation of solitary pulses
in both the normal and in the anomalous dispersion
regimes. Fast saturable absorption as a result, for ex-
ample, of nonlinear polarization rotation and polarization-
dependent losses, may stabilize the pulse propagation
process. Alternatively, frequency shifting may also sta-
bilize the pulsed laser emission. We have obtained good
agreement between the theory and the experimental
observation of picosecond pulse generation in an erbium-
doped sliding-frequency fiber laser operating in the nor-
mal dispersion regime. We further exploited the uniform
linear chirp across the cavity pulses for solitonic pulse
compression of the laser output pulses down to less than
400-fs nearly transform-limited pulses.
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