1,962 research outputs found

    ASEAN and the non-traditional regional security agenda

    Get PDF
    Without a doubt, the whole area of non-traditional security – whether it be threats, issues or challenges (the three are more or less used interchangeably in ASEAN statements and documents on the subject) – has come to occupy a prominent place on the regional security agenda in recent years.1 This is very much in keeping with the ‘widening’, or ‘broadening’, of the security agenda which has occurred internationally in both the academic literature and, crucially, in the policy sphere

    From the margins to the centre: the deepening of New Zealand’s relations with India

    Get PDF
    Despite a sense of mutual goodwill between India and New Zealand, the current bilateral relationship lacks much substance. Mark G. Rolls reviews recent efforts to inject more dynamism into the partnership, and considers how efforts to conclude a free trade agreement may have become a stumbling block rather than a stepping stone

    Investigation of additives for improvement of adhesive and elastomer performance Final report

    Get PDF
    Improvement additives for adhesive and elastomer performanc

    The Relative Attenuation of Self-stimulation, Eating and Drinking Produced by Dopamine-Receptor Blockade

    Get PDF
    Spiroperidol, which blocks dopamine (DA) receptors, attenuated self-stimulation of the nucleus accumbens, septal area, hippocampus, anterior hypothalamus and ventral tegmental area. Dopamine is thus involved in self-stimulation of many sites (in addition to the lateral hypothalamus). The attenuation was not a simple motor impairment of the speed of bar-pressing in that the nucleus accumbens and septal self-stimulation rates were lower than those in treated animals self-stimulating at other sites (Experiment 1). Feeding was partly attenuated, and drinking was much less attenuated by the spiroperidol. Since the rats bar-pressed for brain- stimulation reward, chewed pellets to eat, and licked a tube to drink, dopamine-receptor blockade may attenuate complex motor responses most. Alternatively, the blockade could affect brain- stimulation reward more than the controls of eating, and these latter more than the controls of drinking (Experiment 2). In Experiment 3, feeding and drinking were equally and severely attenuated when rats had to bar-press to obtain food or water. The attenuation was to a level similar to that found for self-stimulation. These experiments suggest that dopamine receptor blockade impairs eating, drinking and self-stimulation by interfering with complex motor responses

    Frustrations of fur-farmed mink

    Get PDF
    Captive animals may suffer if strongly motivated to perform activities that their housing does not allow. We investigated this experimentally for caged mink, and found that they would pay high costs to perform a range of natural behaviours, and release cortisol if their most preferred activity, swimming, was prevented. Investigates the effect of limitations on caged mink. Popularity of fur farming; Research into the possible deprivation of mink, which result in their frustration; Details of the experiment; Impact of an access to water; Results which indicate that fur-farmed mink are still motivated to perform the same activities as their wild counterpart

    A Comparison of Accuracy of Image- versus Hardware-based Tracking Technologies in 3D Fusion in Aortic Endografting

    Get PDF
    OBJECTIVES: Fusion of three-dimensional (3D) computed tomography and intraoperative two-dimensional imaging in endovascular surgery relies on manual rigid co-registration of bony landmarks and tracking of hardware to provide a 3D overlay (hardware-based tracking, HWT). An alternative technique (image-based tracking, IMT) uses image recognition to register and place the fusion mask. We present preliminary experience with an agnostic fusion technology that uses IMT, with the aim of comparing the accuracy of overlay for this technology with HWT. METHOD: Data were collected prospectively for 12 patients. All devices were deployed using both IMT and HWT fusion assistance concurrently. Postoperative analysis of both systems was performed by three blinded expert observers, from selected time-points during the procedures, using the displacement of fusion rings, the overlay of vascular markings and the true ostia of renal arteries. The Mean overlay error and the deviation from mean error was derived using image analysis software. Comparison of the mean overlay error was made between IMT and HWT. The validity of the point-picking technique was assessed. RESULTS: IMT was successful in all of the first 12 cases, whereas technical learning curve challenges thwarted HWT in four cases. When independent operators assessed the degree of accuracy of the overlay, the median error for IMT was 3.9 mm (IQR 2.89-6.24, max 9.5) versus 8.64 mm (IQR 6.1-16.8, max 24.5) for HWT (p = .001). Variance per observer was 0.69 mm(2) and 95% limit of agreement ±1.63. CONCLUSION: In this preliminary study, the error of magnitude of displacement from the "true anatomy" during image overlay in IMT was less than for HWT. This confirms that ongoing manual re-registration, as recommended by the manufacturer, should be performed for HWT systems to maintain accuracy. The error in position of the fusion markers for IMT was consistent, thus may be considered predictable

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention

    On Decoding the Responses of a Population of Neurons from Short Time Windows

    Get PDF
    The effectiveness of various stimulus identification (decoding) procedures for extracting the information carried by the responses of a population of neurons to a set of repeatedly presented stimuli is studied analytically, in the limit of short time windows. It is shown that in this limit, the entire information content of the responses can sometimes be decoded, and when this is not the case, the lost information is quantified. In particular, the mutual information extracted by taking into account only the most likely stimulus in each trial turns out to be, if not equal, much closer to the true value than that calculated from all the probabilities that each of the possible stimuli in the set was the actual one. The relation between the mutual information extracted by decoding and the percentage of correct stimulus decodings is also derived analytically in the same limit, showing that the metric content index can be estimated reliably from a few cells recorded from brief periods. Computer simulations as well as the activity of real neurons recorded in the primate hippocampus serve to confirm these results and illustrate the utility and limitations of the approach
    corecore