3,040 research outputs found

    Experiments with ceramic coatings

    Get PDF
    Report describes the procedures and techniques used in the application of a ceramic coating and the evaluation of test parts through observation of the cracks that occur in this coating due to loading

    Converting InSAR- and GNSS-derived strain rate maps into earthquake hazard models for Anatolia

    Get PDF
    &amp;lt;p&amp;gt;Geodetic measurements of crustal deformation rates can provide important constraints on a region&amp;amp;#8217;s earthquake hazard that purely seismicity-based hazard models may miss. For example, geodesy might show that strain (or a deficit of seismic moment) is accumulating faster than the total rate at which known earthquakes have released it, implying that the long-term hazard may include larger earthquakes with long recurrence intervals (and/or temporal increases in seismicity rates). Conversely, the moment release rate in recent earthquakes might surpass the geodetic moment buildup rate, suggesting that the long-term-average earthquake activity and hazard may in fact may be more quiescent than might be estimated using the earthquake history alone. Such geodetic constraints, however, have traditionally been limited by poor spatial and/or temporal sampling, resulting in ambiguities about how the lithosphere accommodates strain in space and time that can bias estimates of the resulting hazard. High-resolution deformation maps address this limitation by imaging (rather than presuming and/or modelling) where and how deformation takes place. These maps are now within reach for the Alpine-Himalayan Belt &amp;amp;#8211; one of the most populous and seismically hazardous regions on Earth &amp;amp;#8211; thanks to the COMET-LiCSAR InSAR processing system, which performs large-scale automated processing and timeseries analysis of Sentinel-1 data provided by the EU&amp;amp;#8217;s Copernicus programme. We are pairing LiCSAR products with GNSS data to generate high-resolution maps of interseismic surface motion (velocity) and strain rate for the Anatolia region. Here we quantitively investigate what these strain rate distributions imply for seismic hazard in this region, using two approaches in parallel.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;First, building on previous work, we develop a fully probability-based method to pair geodesy and seismic catalogs to estimate the recurrence times of large, moderate and small earthquakes in a given region. We assume that earthquakes 1) obey a power-law magnitude-frequency distribution up to a maximum magnitude and 2) collectively release seismic moment at the same rate that we estimate it is accumulating from the strain rate maps. Iterating over various magnitude-frequency distributions and their governing parameters, and formally incorporating uncertainties in moment buildup rate and the magnitudes of recorded earthquakes, we build a probabilistic long-term-average earthquake model for Anatolia as a whole, including the most likely maximum earthquake magnitude. Second, we estimate how seismic hazard may vary from place to place within Anatolia. Using insights from dislocation models, we identify two key signatures of a locked fault in a strain rate field, allowing us to convert the newly developed strain maps to &amp;amp;#8220;effective fault maps.&amp;amp;#8221; Additionally, we explore how characteristics of earthquake magnitude-frequency distributions may scale with the rate of strain (or moment) buildup, and what these scaling relations imply for the distribution of hazard in Anatolia, using the seismic catalog to evaluate these hypotheses. We also explore the implications of our findings for seismic hazard and address how to expand these approaches to the Alpine-Himalaya Belt as a whole.&amp;lt;/p&amp;gt; </jats:p

    A TH1 Polarizing Vaccine For Boosting The Antitumor Activity Of Adoptively Transferred T Cells

    Get PDF

    Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties

    Full text link
    Advanced Monte Carlo simulations are used to study the effect of nano-slit confinement on metric and topological properties of model DNA chains. We consider both linear and circularised chains with contour lengths in the 1.2--4.8 μ\mum range and slits widths spanning continuously the 50--1250nm range. The metric scaling predicted by de Gennes' blob model is shown to hold for both linear and circularised DNA up to the strongest levels of confinement. More notably, the topological properties of the circularised DNA molecules have two major differences compared to three-dimensional confinement. First, the overall knotting probability is non-monotonic for increasing confinement and can be largely enhanced or suppressed compared to the bulk case by simply varying the slit width. Secondly, the knot population consists of knots that are far simpler than for three-dimensional confinement. The results suggest that nano-slits could be used in nano-fluidic setups to produce DNA rings having simple topologies (including the unknot) or to separate heterogeneous ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure

    Postseismic Deformation Following the 2015 M_w7.8 Gorkha (Nepal) Earthquake: New GPS Data, Kinematic and Dynamic Models, and the Roles of Afterslip and Viscoelastic Relaxation

    Get PDF
    We report Global Positioning System (GPS) measurements of postseismic deformation following the 2015 M_w7.8 Gorkha (Nepal) earthquake, including previously unpublished data from 13 continuous GPS stations installed in southern Tibet shortly after the earthquake. We use variational Bayesian Independent Component Analysis (vbICA) to extract the signal of postseismic deformation from the GPS time series, revealing a broad displacement field extending >150 km northward from the rupture. Kinematic inversions and dynamic forward models show that these displacements could have been produced solely by afterslip on the Main Himalayan Thrust (MHT) but would require a broad distribution of afterslip extending similarly far north. This would require the constitutive parameter (a − b)σ to decrease northward on the MHT to ≤0.05 MPa (an extreme sensitivity of creep rate to stress change) and seems unlikely in light of the low interseismic coupling and high midcrustal temperatures beneath southern Tibet. We conclude that the northward reach of postseismic deformation more likely results from distributed viscoelastic relaxation, possibly in a midcrustal shear zone extending northward from the seismogenic MHT. Assuming a shear zone 5–20 km thick, we estimate an effective shear‐zone viscosity of ~3·10¹⁶–3·10¹⁷ Pa·s over the first 1.12 postseismic years. Near‐field deformation can be more plausibly explained by afterslip itself and implies (a − b)σ ~ 0.5–1 MPa, consistent with other afterslip studies. This near‐field afterslip by itself would have re‐increased the Coulomb stress by ≥0.05 MPa over >30% of the Gorkha rupture zone in the first postseismic year, and deformation further north would have compounded this reloading

    TGF-beta reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells

    Get PDF
    Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24- cell surface marker profile. Here, we report that human CD44+/CD24- cancer cells are genetically highly unstable due to intrinsic defects in their DNA repair capabilities. In fact, in CD44+/CD24- cells constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are critical in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24- state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24- cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness

    Fetal cortical plate segmentation using fully convolutional networks with multiple plane aggregation

    Get PDF
    Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) developmen
    corecore