18 research outputs found

    The On-orbit Calibrations for the Fermi Large Area Telescope

    Full text link
    The Large Area Telescope (LAT) on--board the Fermi Gamma ray Space Telescope began its on--orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009.Comment: 60 pages, 34 figures, submitted to Astroparticle Physic

    Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    SPT Clusters with DES and HST Weak Lensing. II. Cosmological Constraints from the Abundance of Massive Halos

    No full text
    International audienceWe present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel'dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). The cluster sample is constructed from the combined SPT-SZ, SPTpol ECS, and SPTpol 500d surveys, and comprises 1,005 confirmed clusters in the redshift range 0.25−1.780.25-1.78 over a total sky area of 5,200 deg2^2. We use DES Year 3 weak-lensing data for 688 clusters with redshifts z<0.95z<0.95 and HST weak-lensing data for 39 clusters with 0.6<z<1.70.6<z<1.7. The weak-lensing measurements enable robust mass measurements of sample clusters and allow us to empirically constrain the SZ observable--mass relation. For a flat Λ\LambdaCDM cosmology, and marginalizing over the sum of massive neutrinos, we measure Ωm=0.286±0.032\Omega_\mathrm{m}=0.286\pm0.032, σ8=0.817±0.026\sigma_8=0.817\pm0.026, and the parameter combination σ8 (Ωm/0.3)0.25=0.805±0.016\sigma_8\,(\Omega_\mathrm{m}/0.3)^{0.25}=0.805\pm0.016. Our measurement of S8≡σ8 Ωm/0.3=0.795±0.029S_8\equiv\sigma_8\,\sqrt{\Omega_\mathrm{m}/0.3}=0.795\pm0.029 and the constraint from Planck CMB anisotropies (2018 TT,TE,EE+lowE) differ by 1.1σ1.1\sigma. In combination with that Planck dataset, we place a 95% upper limit on the sum of neutrino masses ∑mν<0.18\sum m_\nu<0.18 eV. When additionally allowing the dark energy equation of state parameter ww to vary, we obtain w=−1.45±0.31w=-1.45\pm0.31 from our cluster-based analysis. In combination with Planck data, we measure w=−1.34−0.15+0.22w=-1.34^{+0.22}_{-0.15}, or a 2.2σ2.2\sigma difference with a cosmological constant. We use the cluster abundance to measure σ8\sigma_8 in five redshift bins between 0.25 and 1.8, and we find the results to be consistent with structure growth as predicted by the Λ\LambdaCDM model fit to Planck primary CMB data

    SPT Clusters with DES and HST Weak Lensing. II. Cosmological Constraints from the Abundance of Massive Halos

    No full text
    International audienceWe present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel'dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). The cluster sample is constructed from the combined SPT-SZ, SPTpol ECS, and SPTpol 500d surveys, and comprises 1,005 confirmed clusters in the redshift range 0.25−1.780.25-1.78 over a total sky area of 5,200 deg2^2. We use DES Year 3 weak-lensing data for 688 clusters with redshifts z<0.95z<0.95 and HST weak-lensing data for 39 clusters with 0.6<z<1.70.6<z<1.7. The weak-lensing measurements enable robust mass measurements of sample clusters and allow us to empirically constrain the SZ observable--mass relation. For a flat Λ\LambdaCDM cosmology, and marginalizing over the sum of massive neutrinos, we measure Ωm=0.286±0.032\Omega_\mathrm{m}=0.286\pm0.032, σ8=0.817±0.026\sigma_8=0.817\pm0.026, and the parameter combination σ8 (Ωm/0.3)0.25=0.805±0.016\sigma_8\,(\Omega_\mathrm{m}/0.3)^{0.25}=0.805\pm0.016. Our measurement of S8≡σ8 Ωm/0.3=0.795±0.029S_8\equiv\sigma_8\,\sqrt{\Omega_\mathrm{m}/0.3}=0.795\pm0.029 and the constraint from Planck CMB anisotropies (2018 TT,TE,EE+lowE) differ by 1.1σ1.1\sigma. In combination with that Planck dataset, we place a 95% upper limit on the sum of neutrino masses ∑mν<0.18\sum m_\nu<0.18 eV. When additionally allowing the dark energy equation of state parameter ww to vary, we obtain w=−1.45±0.31w=-1.45\pm0.31 from our cluster-based analysis. In combination with Planck data, we measure w=−1.34−0.15+0.22w=-1.34^{+0.22}_{-0.15}, or a 2.2σ2.2\sigma difference with a cosmological constant. We use the cluster abundance to measure σ8\sigma_8 in five redshift bins between 0.25 and 1.8, and we find the results to be consistent with structure growth as predicted by the Λ\LambdaCDM model fit to Planck primary CMB data

    SPT Clusters with DES and HST Weak Lensing. II. Cosmological Constraints from the Abundance of Massive Halos

    No full text
    International audienceWe present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel'dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). The cluster sample is constructed from the combined SPT-SZ, SPTpol ECS, and SPTpol 500d surveys, and comprises 1,005 confirmed clusters in the redshift range 0.25−1.780.25-1.78 over a total sky area of 5,200 deg2^2. We use DES Year 3 weak-lensing data for 688 clusters with redshifts z<0.95z<0.95 and HST weak-lensing data for 39 clusters with 0.6<z<1.70.6<z<1.7. The weak-lensing measurements enable robust mass measurements of sample clusters and allow us to empirically constrain the SZ observable--mass relation. For a flat Λ\LambdaCDM cosmology, and marginalizing over the sum of massive neutrinos, we measure Ωm=0.286±0.032\Omega_\mathrm{m}=0.286\pm0.032, σ8=0.817±0.026\sigma_8=0.817\pm0.026, and the parameter combination σ8 (Ωm/0.3)0.25=0.805±0.016\sigma_8\,(\Omega_\mathrm{m}/0.3)^{0.25}=0.805\pm0.016. Our measurement of S8≡σ8 Ωm/0.3=0.795±0.029S_8\equiv\sigma_8\,\sqrt{\Omega_\mathrm{m}/0.3}=0.795\pm0.029 and the constraint from Planck CMB anisotropies (2018 TT,TE,EE+lowE) differ by 1.1σ1.1\sigma. In combination with that Planck dataset, we place a 95% upper limit on the sum of neutrino masses ∑mν<0.18\sum m_\nu<0.18 eV. When additionally allowing the dark energy equation of state parameter ww to vary, we obtain w=−1.45±0.31w=-1.45\pm0.31 from our cluster-based analysis. In combination with Planck data, we measure w=−1.34−0.15+0.22w=-1.34^{+0.22}_{-0.15}, or a 2.2σ2.2\sigma difference with a cosmological constant. We use the cluster abundance to measure σ8\sigma_8 in five redshift bins between 0.25 and 1.8, and we find the results to be consistent with structure growth as predicted by the Λ\LambdaCDM model fit to Planck primary CMB data
    corecore