144 research outputs found

    Анализ эффективности использования ремонтной конструкции дефектного участка нефтепровода с применением программного комплекса ANSYS

    Get PDF
    To investigate the performance of semi-automated measurements (RECIST, volume) of hepatic metastases in multidetector-row computed tomography (MDCT) under normal-dose- and simulated low-dose-protocols.Thirty-five patients (67 +/- 13 years) with a total of 79 hepatic metastases underwent 16-MDCT (120 kv, 160 mAseff, pitch 1, 3 mm slice thickness, 2 mm reconstruction increment, B30f standard soft tissue kernel) for either initial staging or therapy monitoring. Corresponding raw data from these standard-dose scans were simulated at lower radiation doses of 80/60/40 mAseff (Somatom Noise Vers.6.1 beta, Siemens Healthcare, Forchheim, Germany). A semi-automated software tool (SyngoCT Oncology, Siemens Healthcare, Forchheim, Germany) was applied to each dose setting to evaluate size parameters (RECIST, volume). These measurements were compared by applying repeated-measures analysis of variance and displayed graphically.For RECIST measurements no statistically significant differences were found between standard dose (Mean RECIST diameter: 20.46 +/- 8.37 mm) and different simulated low radiation doses (80 mAseff: 20.95 +/- 8.20 mm/60 mAseff: 20.50 +/- 8.35 mm/40 mAseff: 19.95 +/- 8.16 mm): P = 0.0774.Statistically significant differences of volume quantification (P 0.05) between 160 mAseff- and either 80 mAseff-(3.46 +/- 4.31 mL) or 60 mAseff-protocols (3.44 +/- 4.35 mL).Software-assisted assessment of RECIST criteria and volume demonstrated valid performances under different dose-settings in MDCT; therefore, substantial radiation dose reduction could be possible with the use of semi-automated measurements in follow-up studies

    PEARLS: Near Infrared Photometry in the JWST North Ecliptic Pole Time Domain Field

    Full text link
    We present Near-Infrared (NIR) ground-based Y, J, H, and K imaging obtained in the James Webb Space Telescope North Ecliptic Pole Time Domain Field (TDF) using the MMT-Magellan Infrared Imager and Spectrometer (MMIRS) on the MMT.These new observations cover a field of approximately 230 arcmin^2 in Y, H, and K and 313 arcmin^2 in J. Using Monte Carlo simulations we estimate a 1 sigma depth relative to the background sky of (Y, J, H, K}) = (23.80, 23.53, 23.13, 23.28) in AB magnitudes for point sources at a 95% completeness level. These observations are part of the ground-based effort to characterize this region of the sky, supplementing space-based data obtained with Chandra, NuSTAR, XMM, AstroSat, HST, and JWST. This paper describes the observations and reduction of the NIR imaging and combines these NIR data with archival imaging in the visible, obtained with the Subaru Hyper-Suprime-Cam, to produce a merged catalog of 57,501 sources. The new observations reported here, plus the corresponding multi-wavelength catalog, will provide a baseline for time-domain studies of bright sources in the TDF.Comment: 23 pages, 10 figures. Accepted for publication in ApJS. Images and catalogs available at https://doi.org/10.5281/zenodo.7934393. Data description available under ancillary files and at the Zenodo site. Added a reference, fixed typos in metadat

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 102210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    Search for gravitational wave bursts in LIGO's third science run

    Get PDF
    We report on a search for gravitational wave bursts in data from the three LIGO interferometric detectors during their third science run. The search targets subsecond bursts in the frequency range 100-1100 Hz for which no waveform model is assumed, and has a sensitivity in terms of the root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published in Classical and Quantum Gravit

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Epigenetic Silencing of Spermatocyte-Specific and Neuronal Genes by SUMO Modification of the Transcription Factor Sp3

    Get PDF
    SUMO modification of transcription factors is linked to repression of transcription. The physiological significance of SUMO attachment to a particular transcriptional regulator, however, is largely unknown. We have employed the ubiquitously expressed murine transcription factor Sp3 to analyze the role of SUMOylation in vivo. We generated mice and mouse embryonic fibroblasts (MEFs) carrying a subtle point mutation in the SUMO attachment sequence of Sp3 (IKEE553D mutation). The E553D mutation impedes SUMOylation of Sp3 at K551 in vivo, without affecting Sp3 protein levels. Expression profiling revealed that spermatocyte-specific genes, such as Dmc1 and Dnahc8, and neuronal genes, including Paqr6, Rims3, and Robo3, are de-repressed in non-testicular and extra-neuronal mouse tissues and in mouse embryonic fibroblasts expressing the SUMOylation-deficient Sp3E553D mutant protein. Chromatin immunoprecipitation experiments show that transcriptional de-repression of these genes is accompanied by the loss of repressive heterochromatic marks such as H3K9 and H4K20 tri-methylation and impaired recruitment of repressive chromatin-modifying enzymes. Finally, analysis of the DNA methylation state of the Dmc1, Paqr6, and Rims3 promoters by bisulfite sequencing revealed that these genes are highly methylated in Sp3wt MEFs but are unmethylated in Sp3E553D MEFs linking SUMOylation of Sp3 to tissue-specific CpG methylation. Our results establish SUMO conjugation to Sp3 as a molecular beacon for the assembly of repression machineries to maintain tissue-specific transcriptional gene silencing
    corecore