18 research outputs found

    Ecological characteristics of Simulium breeding sites in West Africa

    Get PDF
    Twenty-nine taxa of Simulium were identified amongst 527 collections of larvae and pupae from untreated rivers and streams in Liberia (362 collections in 1967–71 & 1989), Togo (125 in 1979–81), Benin (35 in1979–81) and Ghana (5 in 1980–81). Presence or absence of associations between different taxa were usedto group them into six clusters using Ward agglomerative hierarchical cluster analysis. Environmental data associated with the pre-imaginal habitats were then analysed in relation to the six clusters by oneway ANOVA. The results revealed significant effects in determining the clusters of maximum river width (all P < 0.001 unless stated otherwise), water temperature, dry bulb air temperature, relative humidity,altitude, type of water (on a range from trickle to large river), water level, slope, current, vegetation,light conditions, discharge, length of breeding area, environs, terrain, river bed type (P < 0.01), and the supports to which the insects were attached (P < 0.01). When four non-significant contributors (wet bulb temperature, river features, height of waterfall and depth) were excluded and the reduced data-set analysed by principal components analysis (PCA), the first two principal components (PCs) accounted for 87% of the variance, with geographical features dominant in PC1 and hydrological characteristics in PC2. The analyses also revealed the ecological characteristics of each taxon’s pre-imaginal habitats, which are discussed with particular reference to members of the Simulium damnosum species complex, whose breeding site distributions were further analysed by canonical correspondence analysis (CCA), a method also applied to the data on non-vector species

    The Effect of Deltamethrin-Treated Net Fencing Around Cattle Enclosures on Outdoor-biting Mosquitoes in Kumasi, Ghana.

    Get PDF
    Classic vector control strategies target mosquitoes indoors as the main transmitters of malaria are indoor-biting and -resting mosquitoes. However, the intensive use of insecticide-treated bed-nets (ITNs) and indoor residual spraying have put selective pressure on mosquitoes to adapt in order to obtain human blood meals. Thus, early-evening and outdoor vector activity is becoming an increasing concern. This study assessed the effect of a deltamethrin-treated net (100 mg/m(2)) attached to a one-meter high fence around outdoor cattle enclosures on the number of mosquitoes landing on humans. Mosquitoes were collected from four cattle enclosures: Pen A - with cattle and no net; B - with cattle and protected by an untreated net; C - with cattle and protected by a deltamethrin-treated net; D - no cattle and no net. A total of 3217 culicines and 1017 anophelines were collected, of which 388 were Anopheles gambiae and 629 An. ziemanni. In the absence of cattle nearly 3 times more An. gambiae (p<0.0001) landed on humans. The deltamethrin-treated net significantly reduced (nearly three-fold, p<0.0001) culicine landings inside enclosures. The sporozoite rate of the zoophilic An. ziemanni, known to be a secondary malaria vector, was as high as that of the most competent vector An. gambiae; raising the potential of zoophilic species as secondary malaria vectors. After deployment of the ITNs a deltamethrin persistence of 9 months was observed despite exposure to African weather conditions. The outdoor use of ITNs resulted in a significant reduction of host-seeking culicines inside enclosures. Further studies investigating the effectiveness and spatial repellence of ITNs around other outdoor sites, such as bars and cooking areas, as well as their direct effect on vector-borne disease transmission are needed to evaluate its potential as an appropriate outdoor vector control tool for rural Africa

    Potential effects of warmer worms and vectors on onchocerciasis transmission in West Africa

    Get PDF
    Development times of eggs, larvae and pupae of vectors of onchocerciasis (Simulium spp.) and of Onchocerca volvulus larvae within the adult females of the vectors decrease with increasing temperature. At and above 25C,the parasite could reach its infective stage in less than 7 days when vectors could transmit after only two gonotrophic cycles. After incorporating exponential functions for vector development into a novel blackfly population model, it was predicted that fly numbers in Liberia and Ghana would peak at air temperatures of 29C and 34C, about 3C and 7C above current monthly averages, respectively; parous rates of forest flies (Liberia) would peak at 298C and of savannah flies (Ghana) at 308C. Small temperature increases (less than 28C) might lead to changes in geographical distributions of different vector taxa. When the new model was linked to an existing framework for the population dynamics of onchocerciasis in humans and vectors, transmission rates and worm loads were projected to increase with temperature to at least 338C. By contrast, analyses of field data on forest flies in Liberia and savannah flies in Ghana, in relation to regional climate change predictions, suggested, on the basis of simple regressions, that 13–41% decreases in fly numbers would be expected between the present and before 2040. Further research is needed to reconcile these conflicting conclusions

    Indices of onchocerciasis transmission by different members of the Simulium damnosum complex conflict with the paradigm of forest and savanna parasite strains

    No full text
    Onchocerciasis in savanna zones is generally more severe than in the forest and pathologies also differ geographically, differences often ascribed to the existence of two or more strains and incompatibilities between vectors and strains. However, flies in the forest transmit more infective larvae than their savanna counterparts, even in sympatry, contradicting expectations based on the forest and savanna strains paradigm. We analysed data on the numbers of Onchocerca volvulus larvae of different stages found in 10 different taxonomic categories of the Simulium damnosum complex derived from more than 48,800 dissections of flies from Sierra Leone in the west of Africa to Uganda in the east. The samples were collected before widespread ivermectin distribution and thus provide a baseline for evaluating control measures. Savanna species contained fewer larvae per infected or per infective fly than the forest species, even when biting and parous rates were accounted for. The highest transmission indices were found in the forest-dwelling Pra form of Simulium sanctipauli (616 L3/1000 parous flies) and the lowest in the savanna-inhabiting species S. damnosum/S. sirbanum (135) and S. kilibanum (65). Frequency distributions of numbers of L1–2 and L3 larvae found in parous S. damnosum/S. sirbanum, S. kilibanum, S. squamosum, S. yahense, S. sanctipauli, S. leonense and S. soubrense all conformed to the negative binomial distribution, with the mainly savanna-dwelling species (S. damnosum/S. sirbanum) having less overdispersed distributions than the mainly forest-dwelling species. These infection patterns were maintained even when forest and savanna forms were sympatric and biting the same human population. Furthermore, for the first time, levels of blindness were positively correlated with infection intensities of the forest vector S. yahense, consistent with relations previously reported for savanna zones. Another novel result was that conversion rates of L1–2 larvae to L3s were equivalent for both forest and savanna vectors. We suggest that either a multiplicity of factors are contributing to the observed disease patterns or that many parasite strains exist within a continuum

    Palp ratio as a field identification tool for two members of the Anopheles gambiae complex in Ghana (A. melas and A. gambiae)

    Get PDF
    Abstract Background The Anopheles gambiae Giles complex is the most widely studied and the most important insect vector group. We explored the use of the palp ratio method as a field tool to identify A. melas and A. gambiae in Ghana. Methods Human landing catches were conducted to collect mosquitoes in the coastal area of Western Region of Ghana. Palps were removed and segments 3 and 4 + 5 measured using a compound microscope. DNA extraction and downstream PCR for species identification was carried out using the legs and wings. Known A. gambiae collected from the Ashanti Region of Ghana were used for comparison. Results A total of 2120 A. gambiae were collected. Lengths of segments 3 and 4 + 5 were significantly correlated in samples from both regions. Using a palp ratio of 0.81 as the cut-off value, 14.9 % outliers (≥0.81) from our study area were confirmed by PCR as A. melas. PCR also confirmed outliers from the Ashanti Region with palp ratio < 0.81 (10.2 %) as A. gambiae. Conclusion The palp ratio method proved to be a useful tool to identify populations of salt and freshwater A. melas and A. gambiae

    Protection of confined cattle against biting and nuisance flies (Muscidae: Diptera) with insecticide-treated nets in the Ghanaian forest zone at Kumasi.

    No full text
    Insecticide-treated nets for the protection of cattle against Muscinae and Stomoxyinae were evaluated using four identical pens in Kumasi, Ghana, 2005. Two pens served as controls: pen A as negative control and pen C as a positive control containing two zebus and no netting protection. Pens B and D had two zebus each: B was protected with an untreated net (1 m height) while D had the same but deltamethrin-treated net with a persistency attaining 9 months. Nuisance fly densities were weekly monitored using mono-conical traps outside each pen at distances of 20-30 m. No Glossinidae were detected in an otherwise suitable habitat and fewer than ten Tabanidae per catch were recorded. Insect attacks were counted twice per week with photos of selected body regions. Video footages of each animal allowed recordings of defensive movements during 30 s. For the first 3 weeks, mean outside catches were highest around B and C with, respectively, 9.0 and 8.0 insects per trap per day compared with catches outside A and D with 1.8 and 3.3 insects. Catches increased sharply around pens B and C with, respectively, 155.7 and 172.8 insects during week 4 and following, while outside pens A and D significantly fewer insects (11.8 and 7.3) were caught. Pictures of selected body regions showed significantly fewer attacking insects inside pen D, leading to significant nuisance reductions. Feed-uptake and resting was undisturbed, contrasting with relentless disturbance of animals in pens B and C. Protecting confined cattle with a treated net prevented attacks by nuisance insects and reduced their densities
    corecore