1,545 research outputs found

    Rhamnose-based glycomimetic for recruitment of endogenous anti-rhamnose antibodies

    Get PDF
    Recruitment of natural antibodies towards tumour cells for their elimination by the immune system could be a highly specific and efficacious therapeutic strategy. While natural L-rhamnose has already been explored as a suitable antigen for antibody recruitment, we here report the first rhamnose-based glycomimetic to be used for such purpose. The glycomimetic is designed to be more hydrolytically and enzymatically stable than natural rhamnosides, provides a site for easy further conjugation and proved to capture anti-rhamnose IgG antibodies in serological ELISA assay

    PROCESIÓN DEL PENDÓN DE LA CONQUISTA EN SANTA ANA [Material gráfico]

    Get PDF
    Copia digital. Madrid : Ministerio de EducaciĂłn, Cultura y Deporte. SubdirecciĂłn General de CoordinaciĂłn Bibliotecaria, 201

    Probing the Inhibitor versus Chaperone Properties of sp2-Iminosugars towards Human β-Glucocerebrosidase: A Picomolar Chaperone for Gaucher Disease

    Get PDF
    A series of sp2-iminosugar glycomimetics differing in the reducing or nonreducing character, the configurational pattern (d-gluco or l-ido), the architecture of the glycone skeleton, and the nature of the nonglycone substituent has been synthesized and assayed for their inhibition properties towards commercial glycosidases. On the basis of their affinity and selectivity towards GH1 β-glucosidases, reducing and nonreducing bicyclic derivatives having a hydroxylation profile of structural complementarity with d-glucose and incorporating an N′-octyl-isourea or -isothiourea segment were selected for further evaluation of their inhibitory/chaperoning potential against human glucocerebrosidase (GCase). The 1-deoxynojirimycin (DNJ)-related nonreducing conjugates behaved as stronger GCase inhibitors than the reducing counterparts and exhibited potent chaperoning capabilities in Gaucher fibroblasts hosting the neuronopathic G188S/G183W mutation, the isothiourea derivative being indeed one of the most efficient chaperone candidates reported up to date (70% activity enhancement at 20 pM). At their optimal concentration, the four selected compounds promoted mutant GCase activity enhancements over 3-fold; yet, the inhibitor/chaperoning balance became unfavorable at much lower concentration for nonreducing as compared to reducing derivatives.España Ministerio de Economía y Competitividad (contract numbers CTQ2015-64425-C2-1-R and SAF2016-76083-R)Junta de Andalucía contract number FQM2012-146

    Human Milk Oligosaccharide 2′-Fucosyllactose Inhibits Ligand Binding to C-Type Lectin DC-SIGN but Not to Langerin

    Get PDF
    Human milk oligosaccharides (HMOs) and their most abundant component, 2′-Fucosyllactose (2′-FL), are known to be immunomodulatory. Previously, it was shown that HMOs and 2′-FL bind to the C-type lectin receptor DC-SIGN. Here we show, using a ligand-receptor competition assay, that a whole mixture of HMOs from pooled human milk (HMOS) and 2′-FL inhibit the binding of the carbohydrate-binding receptor DC-SIGN to its prototypical ligands, fucose and the oligosaccharide Lewis-B, (Leb) in a dose-dependent way. Interestingly, such inhibition by HMOS and 2′-FL was not detected for another C-type lectin, langerin, which is evolutionarily similar to DC-SIGN. The cell-ligand competition assay using DC-SIGN expressing cells confirmed that 2′-FL inhibits the binding of DC-SIGN to Leb. Molecular dynamic (MD) simulations show that 2′-FL exists in a preorganized bioactive conformation before binding to DC-SIGN and this conformation is retained after binding to DC-SIGN. Leb has more flexible conformations and utilizes two binding modes, which operate one at a time via its two fucoses to bind to DC-SIGN. Our hypothesis is that 2′-FL may have a reduced entropic penalty due to its preorganized state, compared to Leb, and it has a lower binding enthalpy, suggesting a better binding to DC-SIGN. Thus, due to the better binding to DC-SIGN, 2′-FL may replace Leb from its binding pocket in DC-SIGN. The MD simulations also showed that 2′-FL does not bind to langerin. Our studies confirm 2′-FL as a specific ligand for DC-SIGN and suggest that 2′-FL can replace other DC-SIGN ligands from its binding pocket during the ligand-receptor interactions in possible immunomodulatory processes

    Discovery of a New Drug-like Series of OGT Inhibitors by Virtual Screening

    Get PDF
    O-GlcNAcylation is an essential post-translational modification installed by the enzyme O-β- N-acetyl-d-glucosaminyl transferase (OGT). Modulating this enzyme would be extremely valuable to better understand its role in the development of serious human pathologies, such as diabetes and cancer. However, the limited availability of potent and selective inhibitors hinders the validation of this potential therapeutic target. To explore new chemotypes that target the active site of OGT, we performed virtual screening of a large library of commercially available compounds with drug-like properties. We purchased samples of the most promising virtual hits and used enzyme assays to identify authentic leads. Structure-activity relationships of the best identified OGT inhibitor were explored by generating a small library of derivatives. Our best hit displays a novel uridine mimetic scaffold and inhibited the recombinant enzyme with an IC 50 value of 7 µM. The current hit represents an excellent starting point for designing and developing a new set of OGT inhibitors that may prove useful for exploring the biology of OGT

    Multivalent Fucosides Targeting β-Propeller Lectins from Lung Pathogens with Promising Anti-Adhesive Properties

    Get PDF
    Fungal and bacterial pathogens causing lung infections often use lectins to mediate adhesion to glycoconjugates at the surface of host tissues. Given the rapid emergence of resistance to the treatments in current use, β-propeller lectins such as FleA from Aspergillus fumigatus, SapL1 from Scedosporium apiospermum, and BambL from Burkholderia ambifaria have become appealing targets for the design of anti-adhesive agents. In search of novel and cheap anti-infectious agents, we synthesized multivalent compounds that can display up to 20 units of fucose, the natural ligand. We obtained nanomolar inhibitors that are several orders of magnitude stronger than their monovalent analogue according to several biophysical techniques (i.e., fluorescence polarization, isothermal titration calorimetry, and bio-layer interferometry). The reason for high affinity might be attributed to a strong aggregating mechanism, which was examined by analytical ultracentrifugation. Notably, the fucosylated inhibitors reduced the adhesion of A. fumigatus spores to lung epithelial cells when administered 1 h before or after the infection of human lung epithelial cells. For this reason, we propose them as promising anti-adhesive drugs for the prevention and treatment of aspergillosis and related microbial lung infections

    Modulation of the Epithelial-Immune Cell Crosstalk and Related Galectin Secretion by DP3-5 Galacto-Oligosaccharides and β-3′galactosyllactose

    Get PDF
    Prebiotic galacto-oligosaccharides (GOS) were shown to support mucosal immune development by enhancing regulatory-type Th1 immune polarization induced by synthetic CpG oligode-oxynucleotides (TLR9 agonist mimicking a bacterial DNA trigger). Epithelial-derived galectin-9 was associated with these immunomodulatory effects. We aimed to identify the most active fractions within GOS based on the degree of polymerization (DP), and to study the immunomodulatory ca-pacities of DP3-sized β-3′galactosyllactose (β-3′GL) using a transwell co-culture model of human intestinal epithelial cells (IEC) and activated peripheral blood mononuclear cells (PBMC). IEC were apically exposed to different DP fractions of GOS or β-3′GL in the presence of CpG, and basolater-ally co-cultured with αCD3/CD28-activated PBMC, washed, and incubated in fresh medium for IEC-derived galectin analysis. Only DP3-5 in the presence of CpG enhanced galectin-9 secretion. DP3-sized β-3′GL promoted a regulatory-type Th1 response by increasing IFNγ and IL-10 or galec-tin-9 concentrations as compared to CpG alone. In addition, IEC-derived galectin-3,-4, and-9 secretion was increased by β-3′GL when combined with CpG. Therefore, the GOS DP3-5 and most effectively DP3-sized β-3′GL supported the immunomodulatory properties induced by CpG by enhancing epithelial-derived galectin secretion, which, in turn, could support mucosal immunity

    Enhanced Membrane Pore Formation through High-Affinity Targeted Antimicrobial Peptides

    Get PDF
    Many cationic antimicrobial peptides (AMPs) target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted
    • …
    corecore