2,416 research outputs found

    A New Satellite-Based Retrieval of Low-Cloud Liquid-Water Path Using Machine Learning and Meteosat SEVIRI Data

    Get PDF
    Clouds are one of the major uncertainties of the climate system. The study of cloud processes requires information on cloud physical properties, in particular liquid water path (LWP). This parameter is commonly retrieved from satellite data using look-up table approaches. However, existing LWP retrievals come with uncertainties related to assumptions inherent in physical retrievals. Here, we present a new retrieval technique for cloud LWP based on a statistical machine learning model. The approach utilizes spectral information from geostationary satellite channels of Meteosat Spinning-Enhanced Visible and Infrared Imager (SEVIRI), as well as satellite viewing geometry. As ground truth, data from CloudNet stations were used to train the model. We found that LWP predicted by the machine-learning model agrees substantially better with CloudNet observations than a current physics-based product, the Climate Monitoring Satellite Application Facility (CM SAF) CLoud property dAtAset using SEVIRI, edition 2 (CLAAS-2), highlighting the potential of such approaches for future retrieval developments

    Are African leaders misusing Chinese development finance? The price of country ownership

    Get PDF
    In a 2012 blog post, MIT’s Daron Acemoglu and Harvard’s James Robinson call attention to a “fancy school” built in a small village in Sierra Leone and financed by Chinese development aid. They ask a pointed question: “Why would anyone want to build a wonderful school in the middle of what Africans call ‘the bush’?” As Acemoglu and Robinson explain, “Yoni is the home village of Sierra Leone’s president, Ernest Bai Koroma.

    Factors influencing on-scene time in a physician-staffed helicopter emergency medical service (HEMS): a retrospective observational study.

    Get PDF
    BACKGROUND For helicopter emergency service systems (HEMS), the prehospital time consists of response time, on-scene time and transport time. Little is known about the factors that influence on-scene time or about differences between adult and paediatric missions in a physician-staffed HEMS. METHODS We analysed the HEMS electronic database of Swiss Air-Rescue from 01-01-2011 to 31-12-2021 (N = 110,331). We included primary missions and excluded missions with National Advisory Committee for Aeronautics score (NACA) score 0 or 7, resulting in 68,333 missions for analysis. The primary endpoint 'on-scene time' was defined as first physical contact with the patient until take-off to the hospital. A multivariable linear regression model was computed to examine the association of diagnosis, type and number of interventions and monitoring, and patient's characteristics with the primary endpoint. RESULTS The prehospital time and on-scene time of the missions studied were, respectively, 50.6 [IQR: 41.0-62.0] minutes and 21.0 [IQR: 15.0-28.6] minutes. Helicopter hoist operations, resuscitation, airway management, critical interventions, remote location, night-time, and paediatric patients were associated with longer on-scene times. CONCLUSIONS Compared to adult patients, the adjusted on-scene time for paediatric patients was longer. Besides the strong impact of a helicopter hoist operation on on-scene time, the dominant factors contributing to on-scene time are the type and number of interventions and monitoring: improving individual interventions or performing them in parallel may offer great potential for reducing on-scene time. However, multiple clinical interventions and monitoring interact and are not single interventions. Compared to the impact of interventions, non-modifiable factors, such as NACA score, type of diagnosis and age, make only a minor contribution to overall on-scene time

    Helicopter inter-hospital transfer for patients undergoing extracorporeal membrane oxygenation: a retrospective 12-year analysis of a service system.

    Get PDF
    BACKGROUND Patients undergoing extracorporeal membrane oxygenation (ECMO) are critically ill and show high mortality. Inter-hospital transfer of these patients has to be safe, with high survival rates during transport without potentially serious and life-threatening adverse events. The Swiss Air-Rescue provides 24-h/7-days per week inter-hospital helicopter transfers that include on-site ECMO cannulation if needed. This retrospective observational study describes adverse events of patients on ECMO transported by helicopter, and their associated survival. METHODS All patients on ECMO with inter-hospital transfer by helicopter from start of service in February 2009 until May 2021 were included. Patients not transported by helicopter or with missing medical records were excluded. Patient demographics (age, sex) and medical history (type of and reason for ECMO), mission details (flight distance, times, primary or secondary transport), adverse events during the inter-hospital transfer, and survival of transferred patients were recorded. The primary endpoint was patient survival during transfer. Secondary endpoints were adverse events during transfer and 28-day survival. RESULTS We screened 214 ECMO-related missions and included 191 in this analysis. Median age was 54.6 [IQR 46.1-62.0] years, 70.7% were male, and most patients had veno-arterial ECMO (56.5%). The main reasons for ECMO were pulmonary (46.1%) or cardiac (44.0%) failure. Most were daytime (69.8%) and primary missions (n = 100), median total mission time was 182.0 [143.0-254.0] min, and median transfer distance was 52.7 [33.2-71.1] km. All patients survived the transfer. Forty-four adverse events were recorded during 37 missions (19.4%), where 31 (70.5%) were medical and none resulted in patient harm. Adverse events occurred more frequently during night-time missions (59.9%, p = 0.047). Data for 28-day survival were available for 157 patients, of which 86 (54.8%) were alive. CONCLUSION All patients under ECMO survived the helicopter transport. Adverse events were observed for about 20% of the flight missions, with a tendency during the night-time flights, none harmed the patients. Inter-hospital transfer for patients undergoing ECMO provided by 24-h/7-d per week helicopter emergency medical service teams can be considered as feasible and safe. The majority of the patients (54.8%) were still alive after 28 days

    Mechanisms of Airborne Infection via Evaporating and Sedimenting Droplets Produced by Speaking

    Get PDF
    For estimating the infection risk from virus-containing airborne droplets, it is crucial to consider the interplay of all relevant physical-chemical effects that affect droplet evaporation and sedimentation times. For droplet radii in the range 70 nm < R < 60 μm, evaporation can be described in the stagnant-flow approximation and is diffusion-limited. Analytical equations are presented for the droplet evaporation rate, the time-dependent droplet size, and the sedimentation time, including evaporation cooling and solute osmotic-pressure effects. Evaporation makes the time for initially large droplets to sediment much longer and thus significantly increases the viral air load. Using recent estimates for SARS-CoV-2 concentrations in sputum and droplet production rates while speaking, a single infected person that constantly speaks without a mouth cover produces a total steady-state air load of more than 104 virions at a given time. In a midsize closed room, this leads to a viral inhalation frequency of at least 2.5 per minute. Low relative humidity, as encountered in airliners and inside buildings in the winter, accelerates evaporation and thus keeps initially larger droplets suspended in air. Typical air-exchange rates decrease the viral air load from droplets with an initial radius larger than 20 μm only moderately
    corecore