107 research outputs found

    Computational fluid dynamic modeling of fluidized bed polymerization reactors

    Get PDF
    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multifluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multifluid CFD model for gas-particle flow is based on the kinetic theory of granular flow closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor

    Monitoring of particle motions in gas-solid fluidized beds by electrostatic sensors

    Get PDF
    Gas-solid fluidized beds are widely applied in numerous industrial processes. Particle motions significantly affect the performance of fluidized bed reactors and the characterization of particle movements is therefore important for fluidization quality monitoring and scale-up of reactors. Electrostatic charge signals in the fluidized bed contain much dynamic information on particle motions, which are poorly understood and explored. In this work, correlation velocities of Geldart B and D particles were measured, analyzed and compared by induced electrostatic sensors combined with cross-correlation method in the fluidized bed. The results indicated that the average correlation velocity of particle clouds increased and the normalized probability density distributions of correlation velocities broadened when the superficial gas velocity increased in the dense-phase region. Both upward and downward correlation velocities could be acquired in the dynamic bed level region. Under the same excess gas velocity, the average correlation velocity of Geldart D particles was significantly smaller than that of Geldart B particles, which was caused by the smaller bubble sizes caused by the dominant bubble split over coalescence and less volume of gas forming bubbles for Geldart D particles. The experimental results verified the reliability and repeatability of particle correlation velocity measurement by induced electrostatic sensors in the gas-solid fluidized bed, which provides definite potential in monitoring of particle motions

    BBU PL Slides 2017 Strat PLan Jan 5th.xlsx

    No full text

    BBU PL Slides 2017 Strat PLan nov 27th.xlsx

    No full text

    Computational fluid dynamic modeling of fluidized bed polymerization reactors

    No full text
    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multifluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multifluid CFD model for gas-particle flow is based on the kinetic theory of granular flow closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.</p

    BBU PL Slides 2017 Strat PLan Jan 5th.xlsx

    No full text

    BBU PL Slides 2017 Strat PLan Jan 5th.xlsx

    No full text

    BBU PL Slides 2017 Strat PLan nov 27th.xlsx

    No full text
    • …
    corecore