1,035 research outputs found
Topology and Nematic Ordering II: Observable Critical Behavior
This paper is the second in a pair treating a new lattice model for nematic
media. In addition to the familiar isotropic (I) and nematically ordered (N)
phases, the phase diagram established in the previous paper (Paper I) contains
a new, topologically ordered phase (T) occuring at large suppression of
topological defects and weak nematic interactions. This paper (Paper II) is
concerned with the experimental signatures of the proposed phase diagram.
Specific heat, light scattering and magnetic susceptibility near both the N/T
and I/T transitions are studied, and critical behavior determined. The singular
dependences of the Frank constants (, , ) and the dielectric
tensor anisotropy () on temperature upon approaching the N/T
transition are also found.Comment: 10 pages, RevTeX 3.
The "Square Kagome" Quantum Antiferromagnet and the Eight Vertex Model
We introduce a two dimensional network of corner-sharing triangles with
square lattice symmetry. Properties of magnetic systems here should be similar
to those on the kagome lattice. Focusing on the spin half Heisenberg quantum
antiferromagnet, we generalise the spin symmetry group from SU(2) to SU(N). In
the large N limit, we map the model exactly to the eight vertex model, solved
by Baxter. We predict an exponential number of low-lying singlet states, a
triplet gap, and a two-peak specific heat. In addition, the large N limit
suggests a finite temperature phase transition into a phase with ordered
``resonance loops'' and broken translational symmetry.Comment: 5 pages, revtex, 5 eps figures include
Creation of vortices in a Bose-Einstein condensate by a Raman technique
We propose a method for taking a Bose-Einstein condensate in the ground trap
state simultaneously to a different atomic hyperfine state and to a vortex trap
state. This can be accomplished through a Raman scheme in which one of the two
copropagating laser beams has a higher-order Laguerre-Gaussian mode profile.
Coefficients relating the beam waist, pulse area, and trap potentials for a
complete transfer to the m = 1 vortex are calculated for a condensate in the
non-interacting and strongly interacting regimes.Comment: RevTex, 4 pages, 2 PostScript figure
Genome Assembly Improvement and Mapping Convergently Evolved Skeletal Traits in Sticklebacks with Genotyping-by-Sequencing.
Marine populations of the threespine stickleback (Gasterosteus aculeatus) have repeatedly colonized and rapidly adapted to freshwater habitats, providing a powerful system to map the genetic architecture of evolved traits. Here, we developed and applied a binned genotyping-by-sequencing (GBS) method to build dense genome-wide linkage maps of sticklebacks using two large marine by freshwater F2 crosses of more than 350 fish each. The resulting linkage maps significantly improve the genome assembly by anchoring 78 new scaffolds to chromosomes, reorienting 40 scaffolds, and rearranging scaffolds in 4 locations. In the revised genome assembly, 94.6% of the assembly was anchored to a chromosome. To assess linkage map quality, we mapped quantitative trait loci (QTL) controlling lateral plate number, which mapped as expected to a 200-kb genomic region containing Ectodysplasin, as well as a chromosome 7 QTL overlapping a previously identified modifier QTL. Finally, we mapped eight QTL controlling convergently evolved reductions in gill raker length in the two crosses, which revealed that this classic adaptive trait has a surprisingly modular and nonparallel genetic basis
Superfluidity in a gas of strongly-interacting bosons
We consider small systems of bosonic atoms rotating in a toroidal trap. Using
the method of exact numerical diagonalization of the many-body Hamiltonian, we
examine the transition from the Bose-Einstein condensed state to the
Tonks-Girardeau state. The system supports persistent currents in a wide range
between the two limits, even in the absence of Bose-Einstein condensation.Comment: 7 pages, 3 figures, revised version, to appear in Europh. Let
- …
