258 research outputs found

    Differential effects of shading fruit or foliage on the development and composition of grape berries

    Get PDF
    Grape vines (Vitis vinifera L. cv. Cabernet Sauvignon) were selectively shaded with polypropylene doth to separate the effects of shading fruit from the effects of shading foliage on berry development and on the accumulation patterns of sugar, anthocyanins, malate, tartrate and potassium in the fruit. Shading the foliage led to both a delay and a decrease in berry growth. Leaf shading also affected the timing and the magnitude of sugar accumulation. Total sugar per berry was reduced more by shading than was sugar concentration because of the simultaneous effect of shading on fruit size.The rate of pre-veraison malate accumulation, the maximum malate content at veraison, and the rate of post-veraison malate loss in the berries were all highest in the fully sun-exposed vines and were progressively lower with increasing foliage shade. Tartaric acid was significantly lower in fruit from heavily shaded vines than in fruit from the more exposed treatments. Leaf shading was also significantly correlated with an increase in potassium concentration in the fruit. At harvest, juice pH was more dosely correlated with the concentrations of tartaric acid and potassium in the berries than with malate content. Grapes from heavily shaded vines had the highest pH. Anthocyanin accumulation in the fruit was affected more by duster shading than by leaf shading. Shaded fruit had significantly less anthocyanin than sun exposed fruit. These results indicate that in addition to a general delay in ripening there were also specific effects of shading on individual components of berry composition, and that the specific effects were different for leaf and duster shading

    Contrasting parental roles shape sex differences in poison frog space use but not navigational performance.

    Get PDF
    Sex differences in vertebrate spatial abilities are typically interpreted under the adaptive specialization hypothesis, which posits that male reproductive success is linked to larger home ranges and better navigational skills. The androgen spillover hypothesis counters that enhanced male spatial performance may be a byproduct of higher androgen levels. Animal groups that include species where females are expected to outperform males based on life-history traits are key for disentangling these hypotheses. We investigated the association between sex differences in reproductive strategies, spatial behavior, and androgen levels in three species of poison frogs. We tracked individuals in natural environments to show that contrasting parental sex roles shape sex differences in space use, where the sex performing parental duties shows wider-ranging movements. We then translocated frogs from their home areas to test their navigational performance and found that the caring sex outperformed the non-caring sex only in one out of three species. In addition, males across species displayed more explorative behavior than females and androgen levels correlated with explorative behavior and homing accuracy. Overall, we reveal that poison frog reproductive strategies shape movement patterns but not necessarily navigational performance. Together this work suggests that prevailing adaptive hypotheses provide an incomplete explanation of sex differences in spatial abilities

    Long-Standing International Cooperation in Parasitology Research: A Summary of 35 Years of Activities in the Bolivian Chaco

    Get PDF
    The Bolivian Chaco is a semiarid region with a low population density, situated in the southeast part of the Plurinational State of Bolivia. Here, despite the improvements of the last 15 years, poverty remains high in rural areas, where social vulnerability is widespread. The Guaraní ethnic group often lives in isolated communities with a low standard of hygiene and sanitation. This epidemiological scenario favors the spread of transmissible diseases, including several parasitic infections belonging to the neglected tropical diseases (NTDs) group. In this area, a long-standing research activity, built upon the synergism between local and foreign institutions, has been established since the late 1980s and helps to fill in the knowledge gap about the epidemiology dynamics of soil-transmitted helminths, vector-borne parasites, and other parasitic diseases. A 35-year history of cooperation programs in parasitology research has contributed to informing local health authorities of the NTD burden in the Bolivian Chaco and, ultimately, supports local healthcare providers in the management of parasitic diseases

    Constraining the pˉ/p\bar{p}/p Ratio in TeV Cosmic Rays with Observations of the Moon Shadow by HAWC

    Get PDF
    An indirect measurement of the antiproton flux in cosmic rays is possible as the particles undergo deflection by the geomagnetic field. This effect can be measured by studying the deficit in the flux, or shadow, created by the Moon as it absorbs cosmic rays that are headed towards the Earth. The shadow is displaced from the actual position of the Moon due to geomagnetic deflection, which is a function of the energy and charge of the cosmic rays. The displacement provides a natural tool for momentum/charge discrimination that can be used to study the composition of cosmic rays. Using 33 months of data comprising more than 80 billion cosmic rays measured by the High Altitude Water Cherenkov (HAWC) observatory, we have analyzed the Moon shadow to search for TeV antiprotons in cosmic rays. We present our first upper limits on the pˉ/p\bar{p}/p fraction, which in the absence of any direct measurements, provide the tightest available constraints of 1%\sim1\% on the antiproton fraction for energies between 1 and 10 TeV.Comment: 10 pages, 5 figures. Accepted by Physical Review

    Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC

    Full text link
    We present TeV gamma-ray observations of the Crab Nebula, the standard reference source in ground-based gamma-ray astronomy, using data from the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. In this analysis we use two independent energy-estimation methods that utilize extensive air shower variables such as the core position, shower angle, and shower lateral energy distribution. In contrast, the previously published HAWC energy spectrum roughly estimated the shower energy with only the number of photomultipliers triggered. This new methodology yields a much improved energy resolution over the previous analysis and extends HAWC's ability to accurately measure gamma-ray energies well beyond 100 TeV. The energy spectrum of the Crab Nebula is well fit to a log parabola shape (dNdE=ϕ0(E/7 TeV)αβln(E/7 TeV))\left(\frac{dN}{dE} = \phi_0 \left(E/\textrm{7 TeV}\right)^{-\alpha-\beta\ln\left(E/\textrm{7 TeV}\right)}\right) with emission up to at least 100 TeV. For the first estimator, a ground parameter that utilizes fits to the lateral distribution function to measure the charge density 40 meters from the shower axis, the best-fit values are ϕo\phi_o=(2.35±\pm0.040.21+0.20^{+0.20}_{-0.21})×\times1013^{-13} (TeV cm2^2 s)1^{-1}, α\alpha=2.79±\pm0.020.03+0.01^{+0.01}_{-0.03}, and β\beta=0.10±\pm0.010.03+0.01^{+0.01}_{-0.03}. For the second estimator, a neural network which uses the charge distribution in annuli around the core and other variables, these values are ϕo\phi_o=(2.31±\pm0.020.17+0.32^{+0.32}_{-0.17})×\times1013^{-13} (TeV cm2^2 s)1^{-1}, α\alpha=2.73±\pm0.020.02+0.03^{+0.03}_{-0.02}, and β\beta=0.06±\pm0.01±\pm0.02. The first set of uncertainties are statistical; the second set are systematic. Both methods yield compatible results. These measurements are the highest-energy observation of a gamma-ray source to date.Comment: published in Ap

    Daily monitoring of TeV gamma-ray emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC

    Full text link
    We present results from daily monitoring of gamma rays in the energy range 0.5\sim0.5 to 100\sim100 TeV with the first 17 months of data from the High Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2 steradians and duty cycle of >95>95% are unique features compared to other TeV observatories that allow us to observe every source that transits over HAWC for up to 6\sim6 hours each sidereal day. This regular sampling yields unprecedented light curves from unbiased measurements that are independent of seasons or weather conditions. For the Crab Nebula as a reference source we find no variability in the TeV band. Our main focus is the study of the TeV blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a power law index Γ=2.21±0.14stat±0.20sys\Gamma=2.21 \pm0.14_{\mathrm{stat}}\pm0.20_{\mathrm{sys}} and an exponential cut-off E0=5.4±1.1stat±1.0sysE_0=5.4 \pm 1.1_{\mathrm{stat}}\pm 1.0_{\mathrm{sys}} TeV. For Mrk 501, we find an index Γ=1.60±0.30stat±0.20sys\Gamma=1.60\pm 0.30_{\mathrm{stat}} \pm 0.20_{\mathrm{sys}} and exponential cut-off E0=5.7±1.6stat±1.0sysE_0=5.7\pm 1.6_{\mathrm{stat}} \pm 1.0_{\mathrm{sys}} TeV. The light curves for both sources show clear variability and a Bayesian analysis is applied to identify changes between flux states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab Nebula flux by a factor of approximately five. For Mrk 501, several transits show fluxes in excess of three times the Crab Nebula flux. In a comparison to lower energy gamma-ray and X-ray monitoring data with comparable sampling we cannot identify clear counterparts for the most significant flaring features observed by HAWC.Comment: 18 pages, 10 figures, accepted for publication in The Astrophysical Journa

    All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    Full text link
    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken from 234 days between June 2016 to February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of 2.49±0.01-2.49\pm0.01 prior to a break at (45.7±0.1(45.7\pm0.1) TeV, followed by an index of 2.71±0.01-2.71\pm0.01. The spectrum also respresents a single measurement that spans the energy range between direct detection and ground based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review
    corecore