6,654 research outputs found
Effect of the Canting of Local Anisotropy Axes on Ground-State Properties of a Ferrimagnetic Chain with Regularly Alternating Ising and Heisenberg Spins
The effect of the canting of local anisotropy axes on the ground-state phase
diagram and magnetization of a ferrimagnetic chain with regularly alternating
Ising and Heisenberg spins is exactly examined in an arbitrarily oriented
magnetic field. It is shown that individual contributions of Ising and
Heisenberg spins to the total magnetization basically depend on the spatial
orientation of the magnetic field and the canting angle between two different
local anisotropy axes of the Ising spins.Comment: 3 pages, 3 figure
Generalized Berreman's model of the elastic surface free energy of a nematic liquid crystal on a sawtoothed substrate
In this paper we present a generalization of Berreman's model for the elastic
contribution to the surface free-energy density of a nematic liquid crystal in
presence of a sawtooth substrate which favours homeotropic anchoring, as a
function of the wavenumber of the surface structure , the tilt angle
and the surface anchoring strength . In addition to the previously
reported non-analytic contribution proportional to , due to the
nucleation of disclination lines at the wedge bottoms and apexes of the
substrate, the next-to-leading contribution is proportional to for a given
substrate roughness, in agreement with Berreman's predictions. We characterise
this term, finding that it has two contributions: the deviations of the nematic
director field with respect to the corresponding to the isolated disclination
lines, and their associated core free energies. Comparison with the results
obtained from the Landau-de Gennes model shows that our model is quite accurate
in the limit , when strong anchoring conditions are effectively achieved.Comment: 13 pages, 9 figures; revised version submitted to Phys. Rev.
Substitutional effects of in by Cu in CeIn2
We have investigated the evolution of the magnetic properties on the Ce(In1'xCux)2 (0 < x †0.3) series of alloys. The orthorhombic structure of the CeIn2 alloy (Imma) changes into the hexagonal AlB2-type (P6/mmm) for x = 0.05 and, then, into the hexagonal CaIn2-type (P63/mmm) for higher Cu concentrations, up to x = 0.3. The dc (ac) magnetic susceptibility shows an abrupt decrease of the magnetic transition temperature from 22 K to 5.4 K (x = 0.05). The results indicate the influence of the crystallographic type of structure and disorder effects on the magnetic behavior along the series. © Owned by the authors, published by EDP Sciences, 2014
Alternating direction implicit time integrations for finite difference acoustic wave propagation: Parallelization and convergence
This work studies the parallelization and empirical convergence of two finite
difference acoustic wave propagation methods on 2-D rectangular grids, that use
the same alternating direction implicit (ADI) time integration. This ADI
integration is based on a second-order implicit Crank-Nicolson temporal
discretization that is factored out by a Peaceman-Rachford decomposition of the
time and space equation terms. In space, these methods highly diverge and apply
different fourth-order accurate differentiation techniques. The first method
uses compact finite differences (CFD) on nodal meshes that requires solving
tridiagonal linear systems along each grid line, while the second one employs
staggered-grid mimetic finite differences (MFD). For each method, we implement
three parallel versions: (i) a multithreaded code in Octave, (ii) a C++ code
that exploits OpenMP loop parallelization, and (iii) a CUDA kernel for a NVIDIA
GTX 960 Maxwell card. In these implementations, the main source of parallelism
is the simultaneous ADI updating of each wave field matrix, either column-wise
or row-wise, according to the differentiation direction. In our numerical
applications, the highest performances are displayed by the CFD and MFD CUDA
codes that achieve speedups of 7.21x and 15.81x, respectively, relative to
their C++ sequential counterparts with optimal compilation flags. Our test
cases also allow to assess the numerical convergence and accuracy of both
methods. In a problem with exact harmonic solution, both methods exhibit
convergence rates close to 4 and the MDF accuracy is practically higher.
Alternatively, both convergences decay to second order on smooth problems with
severe gradients at boundaries, and the MDF rates degrade in highly-resolved
grids leading to larger inaccuracies. This transition of empirical convergences
agrees with the nominal truncation errors in space and time.Comment: 20 pages, 5 figure
Chiral thermodynamics in a magnetic field
We study thermodynamic properties of the QCD vacuum in a magnetic field below
chiral phase transition. The hadronic phase free energy in a constant
homogeneous magnetic field is calculated in the framework of the chiral
perturbation theory at non-zero pionic mass. It is demonstrated that the order
parameter of the chiral phase transition remains constant provided temperature
and magnetic field strength are related through obtained equation (the
phenomenon of ''quark condensate freezing'').Comment: RevTeX4, 9 pages, no figure
Close binaries and common envelopes
David Jones, Jorge GarcĂa-Rojas, OndĆej Pejcha and Roger Wesson report on their RAS Specialist Discussion Meeting exploring âCommon envelope evolution and post-common-envelope systemsâ
Local variation of the superficial atmospheric electricity activity in a tropical region
A study of the atmospheric surface electrical activity in the Maracay city (10°14'59.1"N 67°37'20.6"W 436masl) is performed, through the analysis of the Carnegie curve. We present the methodological construction of the Field Mill, for the measurement of the electric field atmospheric, and a counter of atmospheric ions, based on the capacitor Gerdien. We shown that the local heating due to convective movement during the morning could change the concentration of ions, and subsequently, produce a second local mĂnimum in the curve of the local electric field, this second minimum is not a feature of the Carnegie curve. We conclude that the curve of local variation of the superficial atmospheric electricity activity, under conditions of clear skies and no clouds, for the tropical region, as in the Maracay city, is functionally similar to Carnegie curve
A Frustrated 3-Dimensional Antiferromagnet: Stacked Layers
We study a frustrated 3D antiferromagnet of stacked layers. The
intermediate 'quantum spin liquid' phase, present in the 2D case, narrows with
increasing interlayer coupling and vanishes at a triple point. Beyond this
there is a direct first-order transition from N{\' e}el to columnar order.
Possible applications to real materials are discussed.Comment: 11 pages,7 figure
- âŠ