6,654 research outputs found

    Effect of the Canting of Local Anisotropy Axes on Ground-State Properties of a Ferrimagnetic Chain with Regularly Alternating Ising and Heisenberg Spins

    Full text link
    The effect of the canting of local anisotropy axes on the ground-state phase diagram and magnetization of a ferrimagnetic chain with regularly alternating Ising and Heisenberg spins is exactly examined in an arbitrarily oriented magnetic field. It is shown that individual contributions of Ising and Heisenberg spins to the total magnetization basically depend on the spatial orientation of the magnetic field and the canting angle between two different local anisotropy axes of the Ising spins.Comment: 3 pages, 3 figure

    Generalized Berreman's model of the elastic surface free energy of a nematic liquid crystal on a sawtoothed substrate

    Get PDF
    In this paper we present a generalization of Berreman's model for the elastic contribution to the surface free-energy density of a nematic liquid crystal in presence of a sawtooth substrate which favours homeotropic anchoring, as a function of the wavenumber of the surface structure qq, the tilt angle α\alpha and the surface anchoring strength ww. In addition to the previously reported non-analytic contribution proportional to qln⁥qq\ln q, due to the nucleation of disclination lines at the wedge bottoms and apexes of the substrate, the next-to-leading contribution is proportional to qq for a given substrate roughness, in agreement with Berreman's predictions. We characterise this term, finding that it has two contributions: the deviations of the nematic director field with respect to the corresponding to the isolated disclination lines, and their associated core free energies. Comparison with the results obtained from the Landau-de Gennes model shows that our model is quite accurate in the limit wL>1wL>1, when strong anchoring conditions are effectively achieved.Comment: 13 pages, 9 figures; revised version submitted to Phys. Rev.

    Substitutional effects of in by Cu in CeIn2

    Get PDF
    We have investigated the evolution of the magnetic properties on the Ce(In1'xCux)2 (0 < x ≀ 0.3) series of alloys. The orthorhombic structure of the CeIn2 alloy (Imma) changes into the hexagonal AlB2-type (P6/mmm) for x = 0.05 and, then, into the hexagonal CaIn2-type (P63/mmm) for higher Cu concentrations, up to x = 0.3. The dc (ac) magnetic susceptibility shows an abrupt decrease of the magnetic transition temperature from 22 K to 5.4 K (x = 0.05). The results indicate the influence of the crystallographic type of structure and disorder effects on the magnetic behavior along the series. © Owned by the authors, published by EDP Sciences, 2014

    Alternating direction implicit time integrations for finite difference acoustic wave propagation: Parallelization and convergence

    Full text link
    This work studies the parallelization and empirical convergence of two finite difference acoustic wave propagation methods on 2-D rectangular grids, that use the same alternating direction implicit (ADI) time integration. This ADI integration is based on a second-order implicit Crank-Nicolson temporal discretization that is factored out by a Peaceman-Rachford decomposition of the time and space equation terms. In space, these methods highly diverge and apply different fourth-order accurate differentiation techniques. The first method uses compact finite differences (CFD) on nodal meshes that requires solving tridiagonal linear systems along each grid line, while the second one employs staggered-grid mimetic finite differences (MFD). For each method, we implement three parallel versions: (i) a multithreaded code in Octave, (ii) a C++ code that exploits OpenMP loop parallelization, and (iii) a CUDA kernel for a NVIDIA GTX 960 Maxwell card. In these implementations, the main source of parallelism is the simultaneous ADI updating of each wave field matrix, either column-wise or row-wise, according to the differentiation direction. In our numerical applications, the highest performances are displayed by the CFD and MFD CUDA codes that achieve speedups of 7.21x and 15.81x, respectively, relative to their C++ sequential counterparts with optimal compilation flags. Our test cases also allow to assess the numerical convergence and accuracy of both methods. In a problem with exact harmonic solution, both methods exhibit convergence rates close to 4 and the MDF accuracy is practically higher. Alternatively, both convergences decay to second order on smooth problems with severe gradients at boundaries, and the MDF rates degrade in highly-resolved grids leading to larger inaccuracies. This transition of empirical convergences agrees with the nominal truncation errors in space and time.Comment: 20 pages, 5 figure

    Chiral thermodynamics in a magnetic field

    Full text link
    We study thermodynamic properties of the QCD vacuum in a magnetic field below chiral phase transition. The hadronic phase free energy in a constant homogeneous magnetic field is calculated in the framework of the chiral perturbation theory at non-zero pionic mass. It is demonstrated that the order parameter of the chiral phase transition remains constant provided temperature and magnetic field strength are related through obtained equation (the phenomenon of ''quark condensate freezing'').Comment: RevTeX4, 9 pages, no figure

    Close binaries and common envelopes

    Get PDF
    David Jones, Jorge García-Rojas, Ondƙej Pejcha and Roger Wesson report on their RAS Specialist Discussion Meeting exploring “Common envelope evolution and post-common-envelope systems”

    Local variation of the superficial atmospheric electricity activity in a tropical region

    Get PDF
    A study of the atmospheric surface electrical activity in the Maracay city (10°14'59.1"N 67°37'20.6"W 436masl) is performed, through the analysis of the Carnegie curve. We present the methodological construction of the Field Mill, for the measurement of the electric field atmospheric, and a counter of atmospheric ions, based on the capacitor Gerdien. We shown that the local heating due to convective movement during the morning could change the concentration of ions, and subsequently, produce a second local mínimum in the curve of the local electric field, this second minimum is not a feature of the Carnegie curve. We conclude that the curve of local variation of the superficial atmospheric electricity activity, under conditions of clear skies and no clouds, for the tropical region, as in the Maracay city, is functionally similar to Carnegie curve

    A Frustrated 3-Dimensional Antiferromagnet: Stacked J1−J2J_{1}-J_{2} Layers

    Full text link
    We study a frustrated 3D antiferromagnet of stacked J1−J2J_1 - J_2 layers. The intermediate 'quantum spin liquid' phase, present in the 2D case, narrows with increasing interlayer coupling and vanishes at a triple point. Beyond this there is a direct first-order transition from N{\' e}el to columnar order. Possible applications to real materials are discussed.Comment: 11 pages,7 figure
    • 

    corecore