68 research outputs found

    Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells

    Get PDF
    Gallic acid (GA), a polyphenol, is widely found in numerous fruits and vegetables, particularly in hickory nuts. In the present study, we found that gallic acid, a natural phenolic compound isolated from fruits and vegetables, had a more potent growth inhibitory effect on two ovarian cancer cell lines, OVCAR-3 and A2780/CP70, than the effect on a normal ovarian cell line, IOSE-364. These results demonstrated that GA selectively inhibits the growth of cancer cells. Gene expression was examined by ELISA and western blot analysis, and gene pathways were examined by luciferase assay. It was found that GA inhibited VEGF secretion and suppressed in vitro angiogenesis in a concentration-dependent manner. GA downregulated AKT phosphorylation as well as HIF-1α expression but promoted PTEN expression. The luciferase assay results suggest that the PTEN/AKT/HIF-1α pathway accounts for the inhibitory effect of GA on VEGF expression and in vitro angiogenesis. These findings provide strong support for the high potential of GA in the prevention and therapy of ovarian cancer

    Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells

    Get PDF
    Gallic acid (GA), a polyphenol, is widely found in numerous fruits and vegetables, particularly in hickory nuts. In the present study, we found that gallic acid, a natural phenolic compound isolated from fruits and vegetables, had a more potent growth inhibitory effect on two ovarian cancer cell lines, OVCAR-3 and A2780/CP70, than the effect on a normal ovarian cell line, IOSE-364. These results demonstrated that GA selectively inhibits the growth of cancer cells. Gene expression was examined by ELISA and western blot analysis, and gene pathways were examined by luciferase assay. It was found that GA inhibited VEGF secretion and suppressed in vitro angiogenesis in a concentration-dependent manner. GA downregulated AKT phosphorylation as well as HIF-1α expression but promoted PTEN expression. The luciferase assay results suggest that the PTEN/AKT/HIF-1α pathway accounts for the inhibitory effect of GA on VEGF expression and in vitro angiogenesis. These findings provide strong support for the high potential of GA in the prevention and therapy of ovarian cancer

    Myricetin inhibits proliferation of cisplatin-resistant cancer cells through a p53-dependent apoptotic pathway

    Get PDF
    Cisplatin is a commonly used drug for cancer treatment by crosslinking DNA, leading to apoptosis of cancer cells, resistance to cisplatin treatment often occurs, leading to relapse. Therefore, there is a need for the development of more effective treatment strategies that can overcome chemoresistance. Myricetin is a flavonoid from fruits and vegetables, showing anticancer activity in various cancer cells. In this study, we found myricetin exhibited greater cytotoxicity than cisplatin in two cisplatin-resistant ovarian cancer cell lines, OVCAR-3 and A2780/CP70, and it was less cytotoxic to the normal ovarian cell line IOSE-364. Myricetin selectively induced apoptosis in both cisplatinresistant cancer cell lines, but did not induce apoptosis in the normal ovarian cell line. It induced both Bcl-2 familydependent intrinsic and DR5 dependent extrinsic apoptosis in OVCAR-3 cells. P53, a multifunctional tumor suppressor, regulated apoptosis in OVCAR-3 cells through a Bcl-2 family protein-dependent pathway. Myricetin did not induce cell cycle arrest in either ovarian cancer cell line. Because of its potency and selectivity against cisplatin-resistant cancer cells, myricetin could potentially be used to overcome cancer chemoresistance against platinum-based therapy

    Myricetin inhibits proliferation of cisplatin-resistant cancer cells through a p53-dependent apoptotic pathway

    Get PDF
    Cisplatin is a commonly used drug for cancer treatment by crosslinking DNA, leading to apoptosis of cancer cells, resistance to cisplatin treatment often occurs, leading to relapse. Therefore, there is a need for the development of more effective treatment strategies that can overcome chemoresistance. Myricetin is a flavonoid from fruits and vegetables, showing anticancer activity in various cancer cells. In this study, we found myricetin exhibited greater cytotoxicity than cisplatin in two cisplatin-resistant ovarian cancer cell lines, OVCAR-3 and A2780/CP70, and it was less cytotoxic to the normal ovarian cell line IOSE-364. Myricetin selectively induced apoptosis in both cisplatin-resistant cancer cell lines, but did not induce apoptosis in the normal ovarian cell line. It induced both Bcl-2 family-dependent intrinsic and DR5 dependent extrinsic apoptosis in OVCAR-3 cells. P53, a multifunctional tumor suppressor, regulated apoptosis in OVCAR-3 cells through a Bcl-2 family protein-dependent pathway. Myricetin did not induce cell cycle arrest in either ovarian cancer cell line. Because of its potency and selectivity against cisplatin-resistant cancer cells, myricetin could potentially be used to overcome cancer chemoresistance against platinum-based therapy

    The flavonoid nobiletin inhibits tumor growth and angiogenesis of ovarian cancers via the Akt pathway

    Get PDF
    Despite its importance, the death rate of ovarian cancer has remained unchanged over the past five decades, demanding an improvement in prevention and treatment of this malignancy. With no known carcinogens, targeted prevention is currently unavailable, and efforts in early detection of this malignancy by screening biomarkers have failed. The inhibition of angiogenesis, also known as angioprevention, is a promising strategy to limit the growth of solid tumors, including ovarian cancers. Nobiletin, a polymethoxy flavonoid compound isolated from the tiansheng plant, has been shown to inhibit the growth of multiple types of human cancers. However, there are no reports involving the effect on nobiletin on human ovarian cancer. The present report shows that nobiletin potently decreases the viability of ovarian cancer cells in vitro. However, nobiletin does not affect the viability of normal ovarian epithelial cells at \u3c40 µM. The antitumor activity of nobiletin was also observed in athymic mouse models and in chicken chorioallantoic membrane (CAM) models. The anti-neoplastic activity of nobiletin was due to its ability to inhibit angiogenesis. We also studied the molecular mechanisms by which nobiletin suppresses angiogenesis. We observed that nobiletin inhibits secretion of the key angiogenesis mediators, Akt, HIF-1α, NF-κB and vascular epithelial growth factor (VEGF) by ovarian cancer cells. Transient transfection experiments showed that nobiletin inhibits production of HIF-1α by downregulation of Akt. Such decreased levels of HIF-1α were responsible for nobiletin-induced suppression of VEGF. Our data suggest that nobiletin may be a promising anti-angiogenic agent relevant for therapy of ovarian cancers

    Toxicity and oxidative stress responses induced by nano- and micro-CoCrMo particles

    Get PDF
    Metal implants are used routinely during total hip and knee replacements and are typically composed of cobalt chromium molybdenum (CoCrMo) alloys. CoCrMo “wear particles”, in the nano- and micro-size ranges, are generated in situ. Meanwhile, occupational exposure to CoCrMo particles may be associated with the development of industrial dental worker's pneumoconiosis. In this study, we report that both nano- and micro-CoCrMo induced a time and dose-dependent toxicity in various cell types (i.e. lung epithelial cells, osteoblasts, and macrophages), and the effects of particle size on cell viability and oxidative responses were interesting and cell specific. Our findings highlight the potential roles that nano- and micro-CoCrMo, whether exposure is due to inhalation or implant wear, and the associated oxidative stress may play in the increasingly reported implant loosening, osteolysis, and systemic complications in orthopaedic patients, and may explain the risk of lung diseases in dental workers

    Immunocompetent 3D Model of Human Upper Airway for Disease Modeling and In Vitro Drug Evaluation

    Get PDF
    The development of more complex in vitro models for the assessment of novel drugs and chemicals is needed because of the limited biological relevance of animal models to humans as well as ethical considerations. Although some human-cell-based assays exist, they are usually 2D, consist of single cell type, and have limited cellular and functional representation of the native tissue. In this study, we have used biomimetic porous electrospun scaffolds to develop an immunocompetent 3D model of the human respiratory tract comprised of three key cell types present in upper airway epithelium. The three cell types, namely, epithelial cells (providing a physical barrier), fibroblasts (extracellular matrix production), and dendritic cells (immune sensing), were initially grown on individual scaffolds and then assembled into the 3D multicell tissue model. The epithelial layer was cultured at the air–liquid interface for up to four weeks, leading to formation of a functional barrier as evidenced by an increase in transepithelial electrical resistance (TEER) and tight junction formation. The response of epithelial cells to allergen exposure was monitored by quantifying changes in TEER readings and by assessment of cellular tight junctions using immunostaining. It was found that epithelial cells cocultured with fibroblasts formed a functional epithelial barrier at a quicker rate than single cultures of epithelial cells and that the recovery from allergen exposure was also more rapid. Also, our data show that dendritic cells within this model remain viable and responsive to external stimulation as evidenced by their migration within the 3D construct in response to allergen challenge. This model provides an easy to assemble and physiologically relevant 3D model of human airway epithelium that can be used for studies aiming at better understanding lung biology, the cross-talk between immune cells, and airborne allergens and pathogens as well as drug delivery

    Ascorbic acid pre-treated quartz stimulates TNF-α release in RAW 264.7 murine macrophages through ROS production and membrane lipid peroxidation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhalation of crystalline silica induces a pulmonary fibrotic degeneration called silicosis caused by the inability of alveolar macrophages to dissolve the crystalline structure of phagocytosed quartz particles. Ascorbic acid is capable of partially dissolving quartz crystals, leading to an increase of soluble silica concentration and to the generation of new radical sites on the quartz surface. The reaction is specific for the crystalline forms of silica. It has been already demonstrated an increased cytotoxicity and stronger induction of pro-inflammatory cyclooxygenase-2 (COX-2) by ascorbic acid pre-treated quartz (QA) compared to untreated quartz (Q) in the murine macrophage cell line RAW 264.7.</p> <p>Methods</p> <p>Taking advantage of the enhanced macrophage response to QA as compared to Q particles, we investigated the first steps of cell activation and the contribution of early signals generated directly from the plasma membrane to the production of TNF-α, a cytokine that activates both inflammatory and fibrogenic pathways.</p> <p>Results</p> <p>Here we demonstrate that TNF-α mRNA synthesis and protein secretion are significantly increased in RAW 264.7 macrophages challenged with QA as compared to Q particles, and that the enhanced response is due to an increase of intracellular ROS. Plasma membrane-particle contact, in the absence of phagocytosis, is sufficient to trigger TNF-α production through a mechanism involving membrane lipid peroxidation and this appears to be even more detrimental to macrophage survival than particle phagocytosis itself.</p> <p>Conclusion</p> <p>Taken together these data suggest that an impairment of pulmonary macrophage phagocytosis, i.e. in the case of alcoholic subjects, could potentiate lung disease in silica-exposed individuals.</p

    Multifunctional Role of Bcl-2 in Malignant Transformation and Tumorigenesis of Cr(VI)-Transformed Lung Cells

    Get PDF
    B-cell lymphoma-2 (Bcl-2) is an antiapoptotic protein known to be important in the regulation of apoptosis in various cell types. However, its role in malignant transformation and tumorigenesis of human lung cells is not well understood. We previously reported that chronic exposure of human lung epithelial cells to the carcinogenic hexavalent chromium Cr(VI) caused malignant transformation and Bcl-2 upregulation; however, the role of Bcl-2 in the transformation is unclear. Using a gene silencing approach, we showed that Bcl-2 plays an important role in the malignant properties of Cr(VI)-transformed cells. Downregulation of Bcl-2 inhibited the invasive and proliferative properties of the cells as well as their colony forming and angiogenic activities, which are upregulated in the transformed cells as compared to control cells. Furthermore, animal studies showed the inhibitory effect of Bcl-2 knockdown on the tumorigenesis of Cr(VI)-transformed cells. The role of Bcl-2 in malignant transformation and tumorigenesis was confirmed by gene silencing experiments using human lung carcinoma NCI-H460 cells. These cells exhibited aggressive malignant phenotypes similar to those of Cr(VI)-transformed cells. Knockdown of Bcl-2 in the H460 cells inhibited malignant and tumorigenic properties of the cells, indicating the general role of Bcl-2 in human lung tumorigenesis. Ingenuity Pathways Analysis (IPA) revealed potential effectors of Bcl-2 in tumorigenesis regulation. Additionally, using IPA together with ectopic expression of p53, we show p53 as an upstream regulator of Bcl-2 in Cr(VI)-transformed cells. Together, our results indicate the novel and multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of human lung epithelial cells chronically exposed to Cr(VI)
    • …
    corecore