72 research outputs found

    Differential expression of colon cancer associated transcript1 (CCAT1) along the colonic adenoma-carcinoma sequence

    Get PDF
    Cataloged from PDF version of article.Background: The transition from normal epithelium to adenoma and, to invasive carcinoma in the human colon is associated with acquired molecular events taking 5-10 years for malignant transformation. We discovered CCAT1, a non-coding RNA over-expressed in colon cancer (CC), but not in normal tissues, thereby making it a potential disease-specific biomarker. We aimed to define and validate CCAT1 as a CC-specific biomarker, and to study CCAT1 expression across the adenoma- carcinoma sequence of CC tumorigenesis. Methods: Tissue samples were obtained from patients undergoing resection for colonic adenoma(s) or carcinoma. Normal colonic tissue (n = 10), adenomatous polyps (n = 18), primary tumor tissue (n = 22), normal mucosa adjacent to primary tumor (n = 16), and lymph node(s) (n = 20), liver (n = 8), and peritoneal metastases (n = 19) were studied. RNA was extracted from all tissue samples, and CCAT1 expression was analyzed using quantitative real time-PCR (qRT-PCR) with confirmatory in-situ hybridization (ISH). Results: Borderline expression of CCAT1 was identified in normal tissue obtained from patients with benign conditions [mean Relative Quantity (RQ) = 5.9]. Significant relative CCAT1 up-regulation was observed in adenomatous polyps (RQ = 178.6 +/- 157.0; p = 0.0012); primary tumor tissue (RQ = 64.9 +/- 56.9; p = 0.0048); normal mucosa adjacent to primary tumor (RQ = 17.7 +/- 21.5; p = 0.09); lymph node, liver and peritoneal metastases (RQ = 11,414.5 +/- 12,672.9; 119.2 +/- 138.9; 816.3 +/- 2,736.1; p = 0.0001, respectively). qRT-PCR results were confirmed by ISH, demonstrating significant correlation between CCAT1 up-regulation measured using these two methods. Conclusion: CCAT1 is up-regulated across the colon adenoma-carcinoma sequence. This up-regulation is evident in pre-malignant conditions and through all disease stages, including advanced metastatic disease suggesting a role in both tumorigenesis and the metastatic process

    Colon cancer associated transcript-1: A novel RNA expressed in malignant and pre-malignant human tissues

    Get PDF
    Early detection of colorectal cancer (CRC) is currently based on fecal occult blood testing (FOBT) and colonoscopy, both which can significantly reduce CRC-related mortality. However, FOBT has low-sensitivity and specificity, whereas colonoscopy is labor- and cost-intensive. Therefore, the discovery of novel biomarkers that can be used for improved CRC screening, diagnosis, staging and as targets for novel therapies is of utmost importance. To identify novel CRC biomarkers we utilized representational difference analysis (RDA) and characterized a colon cancer associated transcript (CCAT1), demonstrating consistently strong expression in adenocarcinoma of the colon, while being largely undetectable in normal human tissues (p < 000.1). CCAT1 levels in CRC are on average 235-fold higher than those found in normal mucosa. Importantly, CCAT1 is strongly expressed in tissues representing the early phase of tumorigenesis: in adenomatous polyps and in tumor-proximal colonic epithelium, as well as in later stages of the disease (liver metastasis, for example). In CRC-associated lymph nodes, CCAT1 overexpression is detectable in all H&E positive, and 40.0% of H&E and immunohistochemistry negative lymph nodes, suggesting very high sensitivity. CCAT1 is also overexpressed in 40.0% of peripheral blood samples of patients with CRC but not in healthy controls. CCAT1 is therefore a highly specific and readily detectable marker for CRC and tumor-associated tissues. Copyright © 2011 UICC

    A method of determining where to target surveillance efforts in heterogeneous epidemiological systems

    Get PDF
    The spread of pathogens into new environments poses a considerable threat to human, animal, and plant health, and by extension, human and animal wellbeing, ecosystem function, and agricultural productivity, worldwide. Early detection through effective surveillance is a key strategy to reduce the risk of their establishment. Whilst it is well established that statistical and economic considerations are of vital importance when planning surveillance efforts, it is also important to consider epidemiological characteristics of the pathogen in question—including heterogeneities within the epidemiological system itself. One of the most pronounced realisations of this heterogeneity is seen in the case of vector-borne pathogens, which spread between ‘hosts’ and ‘vectors’—with each group possessing distinct epidemiological characteristics. As a result, an important question when planning surveillance for emerging vector-borne pathogens is where to place sampling resources in order to detect the pathogen as early as possible. We answer this question by developing a statistical function which describes the probability distributions of the prevalences of infection at first detection in both hosts and vectors. We also show how this method can be adapted in order to maximise the probability of early detection of an emerging pathogen within imposed sample size and/or cost constraints, and demonstrate its application using two simple models of vector-borne citrus pathogens. Under the assumption of a linear cost function, we find that sampling costs are generally minimised when either hosts or vectors, but not both, are sampled
    • 

    corecore