269 research outputs found

    Thermodynamical analogues in quantum information theory

    Get PDF
    The first step in quantum information theory is the identification of entanglement as a valuable resource. The next step is learning how to exploit this resource efficiently. We learn how to exploit entanglement efficiently by applying analogues of thermodynamical concepts. These concepts include reversibility, entropy, and the distinction between intensive and extensive quantities. We discuss some of these analogues and show how they lead to a measure of entanglement for pure states. We also ask whether these analogues are more than analogues, and note that, l o c a l l y, entropy of entanglement is thermodynamical entropy

    Rutherford scattering with radiation damping

    Full text link
    We study the effect of radiation damping on the classical scattering of charged particles. Using a perturbation method based on the Runge-Lenz vector, we calculate radiative corrections to the Rutherford cross section, and the corresponding energy and angular momentum losses.Comment: Latex, 11 pages, 4 eps figure

    Charged sectors, spin and statistics in quantum field theory on curved spacetimes

    Full text link
    The first part of this paper extends the Doplicher-Haag-Roberts theory of superselection sectors to quantum field theory on arbitrary globally hyperbolic spacetimes. The statistics of a superselection sector may be defined as in flat spacetime and each charge has a conjugate charge when the spacetime possesses non-compact Cauchy surfaces. In this case, the field net and the gauge group can be constructed as in Minkowski spacetime. The second part of this paper derives spin-statistics theorems on spacetimes with appropriate symmetries. Two situations are considered: First, if the spacetime has a bifurcate Killing horizon, as is the case in the presence of black holes, then restricting the observables to the Killing horizon together with "modular covariance" for the Killing flow yields a conformally covariant quantum field theory on the circle and a conformal spin-statistics theorem for charged sectors localizable on the Killing horizon. Secondly, if the spacetime has a rotation and PT symmetry like the Schwarzschild-Kruskal black holes, "geometric modular action" of the rotational symmetry leads to a spin-statistics theorem for charged covariant sectors where the spin is defined via the SU(2)-covering of the spatial rotation group SO(3).Comment: latex2e, 73 page

    Aspects of electrostatics in a weak gravitational field

    Full text link
    Several features of electrostatics of point charged particles in a weak, homogeneous, gravitational field are discussed using the Rindler metric to model the gravitational field. Some previously known results are obtained by simpler and more transparent procedures and are interpreted in an intuitive manner. Specifically: (i) We show that the electrostatic potential of a charge at rest in the Rindler frame is expressible as A_0=(q/l) where l is the affine parameter distance along the null geodesic from the charge to the field point. (ii) We obtain the sum of the electrostatic forces exerted by one charge on another in the Rindler frame and discuss its interpretation. (iii) We show how a purely electrostatic term in the Rindler frame appears as a radiation term in the inertial frame. (In part, this arises because charges at rest in a weak gravitational field possess additional weight due to their electrostatic energy. This weight is proportional to the acceleration and falls inversely with distance -- which are the usual characteristics of a radiation field.) (iv) We also interpret the origin of the radiation reaction term by extending our approach to include a slowly varying acceleration. Many of these results might have possible extensions for the case of electrostatics in an arbitrary static geometry. [Abridged Abstract]Comment: 26 pages; accepted for publication in Gen.Rel.Gra

    Charges, Monopoles and Duality Relations

    Get PDF
    A charge-monopole theory is derived from simple and self-evident postulates. Charges and monopoles take an analogous theoretical structure. It is proved that charges interact with free waves emitted from monopoles but not with the corresponding velocity fields. Analogous relations hold for monopole equations of motion. The system's equations of motion can be derived from a regular Lagrangian function.Comment: 17 pages + 3 figures

    Quantum Noise Limits for Nonlinear, Phase-Invariant Amplifiers

    Full text link
    Any quantum device that amplifies coherent states of a field while preserving their phase generates noise. A nonlinear, phase-invariant amplifier may generate less noise, over a range of input field strengths, than any linear amplifier with the same amplification. We present explicit examples of such nonlinear amplifiers, and derive lower bounds on the noise generated by a nonlinear, phase-invariant quantum amplifier.Comment: RevTeX, 6 pages + 4 figures (included in file; hard copy sent on request

    Spin superfluidity and spin-orbit gauge symmetry fixing

    Full text link
    The Hamiltonian describing 2D electron gas, in a spin-orbit active medium, can be cast into a consistent non-Abelian gauge field theory leading to a proper definition of the spin current. The generally advocated gauge symmetric version of the theory results in current densities that are gauge covariant, a fact that poses severe concerns on their physical nature. We show that in fact the problem demands gauge fixing, leaving no room to ambiguity in the definition of physical spin currents. Gauge fixing also allows for polarized edge excitations not present in the gauge symmetric case. The scenario here is analogous to that of superconductivity gauge theory. We develop a variational formulation that accounts for the constraints between U(1) physical fields and SU(2) gauge fields and show that gauge fixing renders a physical matter and radiation currents and derive the particular consequences for the Rashba SO interaction.Comment: to appear in EP

    Helmholtz theorem and the v-gauge in the problem of superluminal and instantaneous signals in classical electrodynamics

    Full text link
    In this work we substantiate the applying of the Helmholtz vector decomposition theorem (H-theorem) to vector fields in classical electrodynamics. Using the H-theorem, within the framework of the two-parameter Lorentz-like gauge (so called v-gauge), we show that two kinds of magnetic vector potentials exist: one of them (solenoidal) can act exclusively with the velocity of light c and the other one (irrotational) with an arbitrary finite velocity vv (including a velocity more than c . We show also that the irrotational component of the electric field has a physical meaning and can propagate exclusively instantaneously.Comment: This variant has been accepted for publication in Found. Phys. Letter

    On the Solutions of the Lorentz-Dirac Equation

    Full text link
    We discuss the unstable character of the solutions of the Lorentz-Dirac equation and stress the need of methods like order reduction to derive a physically acceptable equation of motion. The discussion is illustrated with the paradigmatic example of the non-relativistic harmonic oscillator with radiation reaction. We also illustrate removal of the noncasual pre-acceleration with the introduction of a small correction in the Lorentz-Dirac equation.Comment: 4 eps figs. to be published in GR
    corecore