32 research outputs found

    Status of the Cold Mass of the Short Straight Section for the LHC

    Get PDF
    In the framework of the LHC (Large Hadron Collider) R&D program, CERN and CEA-Saclay have collaborated to develop and construct two quadrupole magnet prototypes which have been successfully cold-teste d. This collaboration has been extended as part of French special contribution to the LHC project. The previous design has been adapted to meet the new LHC parameters and two new cold masses are being constructed. This paper describes the new cold masses, their assembly process and the foreseen organization for the industrial production of about 470 units

    293 K - 1.9 K supporting systems for the Large Hadron Collider (LHC) cryo-magnets

    Get PDF
    The LHC machine will incorporate some 2000 main ring super-conducting magnets cooled at 1.9 K by super-fluid pressurized helium, mainly 15m-long dipoles with their cryostats and 6m-long quadrupoles housed in the Short Straight Section (SSS) units. This paper presents the design of the support system of the LHC arc cryo-magnets between 1.9 K at the cold mass and 293 K at the cryostat vacuum vessel. The stringent positioning precision for magnet alignment and the high thermal performance for cryogenic efficiency are the main conflicting requirements, which have lead to a trade-off design. The systems retained for LHC are based on column-type supports positioned in the vertical plane of the magnets inside the cryostats. An ad-hoc design has been achieved both for cryo-dipoles and SSS. Each column is composed of a main tubular thin-walled structure in composite material (glass-fibre/epoxy resin, for its low thermal conductivity properties), interfaced to both magnet and cryostat via stainless steel flanges. The thermal performance of the support is improved by intercepting part of the conduction heat at two intermediate temperature levels (one at 50-75 K and the other at 4.5-20 K). These intercepts, on the composite column, are thermally connected to the helium gas cooled thermal shield and radiation screen of the cryo-magnet. An overview of the design requirements is given, together with an appreciation of the system design. Particular attention is dedicated to the support system of the SSS where the positioning precision of the quadrupole magnet is the most critical

    The short straight sections for the LHC

    Get PDF
    During more than five years a close collaboration between CERN and CEA-Saclay led to the development and construction of two prototype quadrupole magnets and the integration of one of them into the short straight section of the LHC half-cell test string at CERN. In the frame of the special host country contribution to the LHC project this collaboration has been extended to the CNRS laboratory in Orsay and covers besides the quadrupole magnets the complete cold mass assembly (CEA) and the integration into the short straight section cryostat (CNRS). The short straight sections include not only the main lattice quadrupoles with their protection diodes, they also house different corrector magnets and the beam position monitors. Further, they provide the cryogenic feed units for a half-cell with all the magnet interconnections and the jumper connection to the separate cryo-line. The paper will show the general lay-out of these complex units and elaborate the different aspects of their assembly

    Rapport final de la Collaboration CERN-CNRS pour la construction du LHC: Accord Technique d'Exécution No 2 Cryostats et assemblage des sections droites courtes (SSS) du LHC

    Get PDF
    Depuis 1995 et suite à la signature du protocole de Collaboration, le CERN, le CEA et le CNRS ont étroitement collaboré dans le cadre de la contribution exceptionnelle de la France à la construction du LHC. Pour le CNRS, l'Institut de Physique Nucléaire d'Orsay a pris en charge deux Accords Techniques d'Exécution. Le premier concerne la conception et l'assemblage des Sections Droites Courtes de la machine, et le deuxième, l'étalonnage des thermomètres cryogéniques du LHC. Dans le cadre de l'Accord Technique d'Exécution N°2, le Bureau d'Etudes de la Division Accélérateur de l'IPNO et le groupe AT-CRI du CERN ont travaillé de concert pour mener à bien la conception des SSS (Short Straight Section) et de tous les équipements nécessaires à l'assemblage. Ce rapport a donc pour objectif de dresser, en termes d'historique, d'organisation, de résultats quantitatifs et qualitatifs et de moyens mis en ?uvre, un tableau aussi complet que possible du déroulement de cette Collaboration entre le CERN et le CNRS

    Thermal Performance of the LHC Short Straight Section Cryostat

    Get PDF
    The LHC Short Straight Section (SSS) cryostat houses and thermally protects in vacuum the cold mass which contains a twin-aperture superconducting quadrupole magnet and superconducting corrector magnets operating at 1.9 K in superfluid helium. In addition to mechanical requirements, the cryostat is designed to minimize the heat in-leak from the ambient temperature to the cold mass. Mechanical components linking the cold mass to the vacuum vessel such as support posts and an insulation vacuum barrier are designed to have minimum heat conductivity with efficient thermalisations for heat interception. Heat in-leak by radiation is reduced by employing multilayer insulation wrapped around the cold mass and an actively cooled aluminium thermal shield. The recent commissioning and operation of two SSS prototypes in the LHC Test String 2 have given a first experimental validation of the thermal performance of the SSS cryostat in nominal operating conditions. Temperature sensors mounted in critical locations provide a temperature mapping which allows a crosscheck with the calculated temperature values and thermal performance. Moreover the measurements allowed a validation of the efficiency of the employed thermalisations. This paper presents the experimental results for the thermal performance of cryostat components and gives a first comparison with the design values

    Cryogenic and vacuum sectorisation of the LHC arcs

    Get PDF
    Following the recommendation of the LHC TC of June 20th, 1995 to introduce a separate cryogenic distribution line (QRL), which opened the possibility to have a finer cryogenic and vacuum sectorisation of the LHC machine than the original 8 arcs scheme, a working group was set up to study the implications: technical feasibility, advantages and drawbacks as well as cost of such a sectorisation (DG/DI/LE/dl, 26 July 1995). This report presents the conclusions of the Working Group. In the LHC Conceptual Design Report, ref. CERN/AC/95-05 (LHC), 20 October 1995, the so-called "Yellow Book", a complete cryostat arc (~ 2.9 km) would have to be warmed up in order to replace a defective cryomagnet. Even by coupling the two large refrigerators feeding adjacent arcs at even points to speed up the warm-up and cool down of one arc, the minimum down-time of the machine needed to replace a cryomagnet would be more than a full month (and even 52 days with only one cryoplant). Cryogenic and vacuum sectorisation of an arc into smaller sectors is technically feasible and would allow to reduce the down-times considerably (by one to three weeks with four sectors of 750 m in length, with respectively two or one cryoplants). In addition, sectorisation of the arcs may permit a more flexible quality control and commissioning of the main machine systems, including cold testing of small magnet strings. Sectorisation, described in detail in the following paragraphs, consists essentially of installing several additional cryogenic and vacuum valves as well as some insulation vacuum barriers. Additional cryogenic valves are needed in the return lines of the circuits feeding each half-cell in order to complete the isolation of the cryoline QRL from the machine, allowing intervention (i.e. venting to atmospheric pressure) on machine sectors without affecting the rest of an arc. Secondly, and for the same purpose, special vacuum and cryogenic valves must be installed, at the boundaries of machine sectors, for the circuits not passing through the cryoline QRL. Finally, some additional vacuum barriers must be installed around the magnet cold masses to divide the insulation vacuum of the magnet cryostats into independent sub-sectors, permitting to keep under insulating vacuum the cryogenically floating cold masses, while a sector (or part of it) is warmed up and opened to atmosphere. A reasonable scenario of sectorisation, namely with four 650-750 m long sectors per arc, and each consisting of 3 or 4 insulation vacuum sub-sectors with two to four half-cells, would represent an additional total cost of about 6.6 MCHF for the machine. It is estimated that this capital investment would be paid off by time savings in less than three long unscheduled interventions such as the change of a cryomagnet

    Update of the LHC Arc Cryostat Systems Layouts and Integration

    Get PDF
    Since the LHC Conceptual Design report's publication in October 1995 [1], and subsequent evolutions [2], the LHC Arc Cryostat System has undergone recently a number of significant changes, dictated by the natural evolution of the project. Most noteworthy are the recent decisions to route the large number of auxiliary circuits feeding the arc corrector magnets in a separate tube placed inside the cryostat with connections to the magnets every half-cell. Further decisions concern simplification of the baseline vacuum and cryogenic sectorization, the finalization of the design of the arc cryogenic modules and the layout of the arc electrical distribution feedboxes. The most recent features of the highly intricate cryogenics, magnetic, vacuum and electrical distribution systems of the LHC are presente

    The New Superfluid Helium Cryostats for the Short Straight Sections of the CERN Large Hadron Collider (LHC)

    Get PDF
    The lattice of the CERN Large Hadron Collider (LHC) contains 364 Short Straight Section (SSS) units, one in every 53 m long half-cell. An SSS consists of three major assemblies: the standard cryostat section, the cryogenic service module, and the jumper connection. The standard cryostat section of an SSS contains the twin aperture high-gradient superconducting quadrupole and two pairs of superconducting corrector magnets, operating in pressurized helium II at 1.9 K. Components for isolating cryostat insulation vacuum, and the cryogenic supply lines, have to be foreseen. Special emphasis is given to the design changes of the SSS following adoption of an external cryogenic supply line (QRL). A jumper connection connects the SSS to the QRL, linking all the cryogenic tubes necessary for the local full-cell cooling loop [at every second SSS]. The jumper is connected to one end of the standard cryostat section via the cryogenic service module, which also houses beam diagnostics, current feedthroughs, and instrumentation capillaries. The conceptual design fulfilling the tight requirements of magnet alignment precision and cryogenic performance are described. Construction details, aimed at minimizing costs of series manufacturing and assembly, while ensuring the high quality of this complex accelerator component, are given

    Mechanical design and layout of the LHC standard half-cell

    Get PDF
    The LHC Conceptual Design Report issued on 20th October 1995 [1] introduced significant changes to some fundamental features of the LHC standard half-cell, composed of one quadrupole, 3 dipoles and a set of corrector magnets. A separate cryogenic distribution line has been adopted containing most of the distribution lines previously installed inside the main cryostat. The dipole length has been increased from 10 to 15 m and independent powering of the focusing and defocusing quadrupole magnets has been chosen. Individual quench protection diodes were introduced in magnet interconnects and many auxiliary bus bars were added to feed in series the various families of superconducting corrector magnets. The various highly intricate basic systems such as: cryostats and cryogenics feeders, superconducting magnets and their electrical powering and protection, vacuum beam screen and its cooling, support and alignment devices have been redesigned, taking into account the very tight space available. These space constraints are imposed by the desire to have maximum integral bending field strength for maximum LHC energy, in the existing LEP tunnel. Finally, cryogenic and vacuum sectorisation have been introduced to reduce downtimes and facilitate commissioning

    A Modular Design for the 56 Variants of the Short Straight Section in the Arcs of the Large Hadron Collider (LHC)

    Get PDF
    The 360 Short Straight Sections (SSS) necessary for the eight arcs of the LHC machine have to fulfil different requirements. Their main function is to house the lattice two-in-one superconducting quadrupole and various correction magnets, all operating at 1.9 K in a superfluid helium bath. The magnetic and powering schemes of the arcs and the fact that the two proton beams alternate between the inner and outer magnet channels impose 24 different combinations of magnet assemblies, all housed in an identical helium enclosure. The cryogenic architecture of the LHC machine is based on cryogenic loops spanning over one half-cell (53 m) for the 4.6-20 K circuit, over a full cell (107 m) for the 1.9 K circuits, up to the full arc (about 2.3 km) for the shield cooling line. This cryogenic layout, when superimposed to the magnetic scheme, further complicated by the cryostat insulation vacuum sectorisation every 2 cells, creates additional assembly variants, up to a total number of 56. The required flexibility in the manufacture and assembly, as well as economic considerations, have led to a modular design for the different SSS components and sub-assemblies. This modularity allows to "specialise" the SSS at the latest possible assembly step of the "just in time" production line. This paper presents the conceptual design considerations to achieve this modularity, the SSS design retained for the series manufacture, and the assembly procedures recently validated on a prototype program at CERN
    corecore