33 research outputs found

    The antiviral protein viperin inhibits HCV replication via interaction with NS5A

    Get PDF
    The interferon-stimulated gene viperin has been shown to have antiviral activity against hepatitis C virus (HCV) in the context of the HCV replicon, although the molecular mechanisms responsible are not well understood. Here we demonstrate that viperin plays an integral part in the ability of interferon to limit replication of cell culture derived HCV (JFH-1) that accurately reflects the complete viral life cycle. Using confocal microscopy and Fluorescence Resonance Energy Transfer (FRET) analysis we demonstrate that viperin localizes and interacts with HCV NS5A at the lipid droplet interface. In addition viperin also associates with NS5A and the pro-viral cellular factor, VAP-A at the HCV replication complex. The ability of viperin to limit HCV replication was dependent on residues within the C-terminus as well as an N-terminal amphipathic helix. Removal of the amphipathic helix redirected viperin from the cytosolic face of the ER and the lipid droplet to a homogenous cytoplasmic distribution, coinciding with a loss of antiviral effect. C-terminal viperin mutants still localized to the lipid droplet interface and replication complexes but did not interact with NS5A proteins as determined by FRET analysis. In conclusion we propose that viperin interacts with NS5A and the host factor VAP-A to limit HCV replication at the replication complex. This highlights the complexity of host control of viral replication by interferon stimulated gene expression

    Human, Nonhuman Primate, and Bat Cells Are Broadly Susceptible to Tibrovirus Particle Cell Entry

    Get PDF
    In 2012, the genome of a novel rhabdovirus, Bas-Congo virus (BASV), was discovered in the acute-phase serum of a Congolese patient with presumed viral hemorrhagic fever. In the absence of a replicating virus isolate, fulfilling Koch’s postulates to determine whether BASV is indeed a human virus and/or pathogen has been impossible. However, experiments with vesiculoviral particles pseudotyped with Bas-Congo glycoprotein suggested that BASV particles can enter cells from multiple animals, including humans. In 2015, genomes of two related viruses, Ekpoma virus 1 (EKV-1) and Ekpoma virus 2 (EKV-2), were detected in human sera in Nigeria. Isolates could not be obtained. Phylogenetic analyses led to the classification of BASV, EKV-1, and EKV-2 in the same genus, Tibrovirus, together with five biting midge-borne rhabdoviruses [i.e., Beatrice Hill virus (BHV), Bivens Arm virus (BAV), Coastal Plains virus (CPV), Sweetwater Branch virus (SWBV), and Tibrogargan virus (TIBV)] not known to infect humans. Using individual recombinant vesiculoviruses expressing the glycoproteins of all eight known tibroviruses and more than 75 cell lines representing different animal species, we demonstrate that the glycoproteins of all tibroviruses can mediate vesiculovirus particle entry into human, bat, nonhuman primate, cotton rat, boa constrictor, and Asian tiger mosquito cells. Using four of five isolated authentic tibroviruses (i.e., BAV, CPV, SWBV, and TIBV), our experiments indicate that many cell types may be partially resistant to tibrovirus replication after virion cell entry. Consequently, experimental data solely obtained from experiments using tibrovirus surrogate systems (e.g., vesiculoviral pseudotypes, recombinant vesiculoviruses) cannot be used to predict whether BASV, or any other tibrovirus, infects humans

    Broad neutralization of SARS-related viruses by human monoclonal antibodies

    Get PDF
    Broadly protective vaccines against known and preemergent human coronaviruses (HCoVs) are urgently needed. To gain a deeper understanding of cross-neutralizing antibody responses, we mined the memory B cell repertoire of a convalescent severe acute respiratory syndrome (SARS) donor and identified 200 SARS coronavirus 2 (SARS-CoV-2) binding antibodies that target multiple conserved sites on the spike (S) protein. A large proportion of the non-neutralizing antibodies display high levels of somatic hypermutation and cross-react with circulating HCoVs, suggesting recall of preexisting memory B cells elicited by prior HCoV infections. Several antibodies potently cross-neutralize SARS-CoV, SARS-CoV-2, and the bat SARS-like virus WIV1 by blocking receptor attachment and inducing S1 shedding. These antibodies represent promising candidates for therapeutic intervention and reveal a target for the rational design of pan-sarbecovirus vaccines

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Two Point Mutations in Old World Hantavirus Glycoproteins Afford the Generation of Highly Infectious Recombinant Vesicular Stomatitis Virus Vectors

    No full text
    Human hantavirus infections cause hantavirus pulmonary syndrome in the Americas and hemorrhagic fever with renal syndrome (HFRS) in Eurasia. No FDA-approved vaccines and therapeutics exist for these deadly viruses, and their development is limited by the requirement for high biocontainment. In this study, we identified and characterized key amino acid changes in the surface glycoproteins of HFRS-causing Hantaan virus that enhance their incorporation into recombinant vesicular stomatitis virus (rVSV) particles. The replication-competent rVSVs encoding Hantaan virus and Dobrava-Belgrade virus glycoproteins described in this work provide a powerful and facile system to study hantavirus entry under lower biocontainment and may have utility as hantavirus vaccines.Rodent-to-human transmission of hantaviruses is associated with severe disease. Currently, no FDA-approved, specific antivirals or vaccines are available, and the requirement for high biocontainment (biosafety level 3 [BSL-3]) laboratories limits hantavirus research. To study hantavirus entry in a BSL-2 laboratory, we set out to generate replication-competent, recombinant vesicular stomatitis viruses (rVSVs) bearing the Gn and Gc (Gn/Gc) entry glycoproteins. As previously reported, rVSVs bearing New World hantavirus Gn/Gc were readily rescued from cDNAs, but their counterparts bearing Gn/Gc from the Old World hantaviruses, Hantaan virus (HTNV) or Dobrava-Belgrade virus (DOBV), were refractory to rescue. However, serial passage of the rescued rVSV-HTNV Gn/Gc virus markedly increased its infectivity and capacity for cell-to-cell spread. This gain in viral fitness was associated with the acquisition of two point mutations: I532K in the cytoplasmic tail of Gn and S1094L in the membrane-proximal stem of Gc. Follow-up experiments with rVSVs and single-cycle VSV pseudotypes confirmed these results. Mechanistic studies revealed that both mutations were determinative and contributed to viral infectivity in a synergistic manner. Our findings indicate that the primary mode of action of these mutations is to relocalize HTNV Gn/Gc from the Golgi complex to the cell surface, thereby affording significantly enhanced Gn/Gc incorporation into budding VSV particles. Finally, I532K/S1094L mutations in DOBV Gn/Gc permitted the rescue of rVSV-DOBV Gn/Gc, demonstrating that incorporation of cognate mutations into other hantaviral Gn/Gc proteins could afford the generation of rVSVs that are otherwise challenging to rescue. The robust replication-competent rVSVs, bearing HTNV and DOBV Gn/Gc, reported herein may also have utility as vaccines

    Regulation of Hepatitis C Virus Translation and Infectious Virus Production by the MicroRNA miR-122▿

    No full text
    miR-122 is a liver-specific microRNA that positively regulates hepatitis C virus (HCV) RNA abundance and is essential for production of infectious HCV. Using a genetic approach, we show that its ability to enhance yields of infectious virus is dependent upon two miR-122-binding sites near the 5′ end of the HCV genome, S1 and S2. Viral RNA with base substitutions in both S1 and S2 failed to produce infectious virus in transfected cells, while virus production was rescued to near-wild-type levels in cells supplemented with a complementary miR-122 mutant. A comparison of mutants with substitutions in only one site revealed S1 to be dominant, as an S2 but not S1 mutant produced high virus yields in cells supplemented with wild-type miR-122. Translation of HCV RNA was reduced over 50% by mutations in either S1 or S2 and was partially rescued by transfection of the complementary miR-122 mutant. Unlike the case for virus replication, however, both sites function equally in regulating translation. We conclude that miR-122 promotes replication by binding directly to both sites in the genomic RNA and, at least in part, by stimulating internal ribosome entry site (IRES)-mediated translation. However, a comparison of the replication capacities of the double-binding-site mutant and an IRES mutant with a quantitatively equivalent defect in translation suggests that the decrement in translation associated with loss of miR-122 binding is insufficient to explain the profound defect in virus production by the double mutant. miR-122 is thus likely to act at an additional step in the virus life cycle

    The Hantavirus Surface Glycoprotein Lattice and Its Fusion Control Mechanism

    Get PDF
    Hantaviruses are rodent-borne viruses causing serious zoonotic outbreaks worldwide for which no treatment is available. Hantavirus particles are pleomorphic and display a characteristic square surface lattice. The envelope glycoproteins Gn and Gc form heterodimers that further assemble into tetrameric spikes, the lattice building blocks. The glycoproteins, which are the sole targets of neutralizing antibodies, drive virus entry via receptor-mediated endocytosis and endosomal membrane fusion. Here we describe the high-resolution X-ray structures of the heterodimer of Gc and the Gn head and of the homotetrameric Gn base. Docking them into an 11.4-angstrom-resolution cryoelectron tomography map of the hantavirus surface accounted for the complete extramembrane portion of the viral glycoprotein shell and allowed a detailed description of the surface organization of these pleomorphic virions. Our results, which further revealed a built-in mechanism controlling Gc membrane insertion for fusion, pave the way for immunogen design to protect against pathogenic hantaviruses.Peer reviewe

    A New Transferrin Receptor Aptamer Inhibits New World Hemorrhagic Fever Mammarenavirus Entry

    No full text
    Pathogenic New World hemorrhagic fever mammarenaviruses (NWM) utilize Glycoprotein 1 (GP1) to target the apical domain of the human transferrin receptor (hTfR) for facilitating cell entry. However, the conservation between their GP1s is low. Considering this and the slow evolutionary progression of mammals compared to viruses, therapeutic targeting of hTfR provides an attractive avenue for cross-strain inhibition and diminishing the likelihood of escape mutants. Aptamers present unique advantages for the development of inhibitors to vial entry, including ease of synthesis, lack of immunogenicity, and potentially cold-chain breaking solutions to diseases endemic to South America. Here, recognizing that in vivo competition with the natural ligand, transferrin (Tf), likely drove the evolution of GP1 to recognize the apical domain, we performed competitive in vitro selections against hTfR-expressing cells with supplemented Tf. The resultant minimized aptamer, Waz, binds the apical domain of the receptor and inhibits infection of human cells by recombinant NWM in culture (EC50 ≃400 nmol/l). Aptamer multimerization further enhanced inhibition >10-fold (EC50 ≃30 nmol/l). Together, our results highlight the ability to use a competitor to bias the outcome of a selection and demonstrate how avidity effects can be leveraged to enhance both aptamer binding and the potency of viral inhibition

    Visualization of Early RNA Replication Kinetics of SARS-CoV-2 by Using Single Molecule RNA-FISH Combined with Immunofluorescence

    No full text
    SARS-CoV-2 infection remains a global burden. Despite intensive research, the mechanism and dynamics of early viral replication are not completely understood, such as the kinetics of the formation of genomic RNA (gRNA), sub-genomic RNA (sgRNA), and replication centers/organelles (ROs). We employed single-molecule RNA-fluorescence in situ hybridization (smRNA-FISH) to simultaneously detect viral gRNA and sgRNA and immunofluorescence to detect nsp3 protein, a marker for the formation of RO, and carried out a time-course analysis. We found that single molecules of gRNA are visible within the cytoplasm at 30 min post infection (p.i.). Starting from 2 h p.i., most of the viral RNA existed in clusters/speckles, some of which were surrounded by single molecules of sgRNA. These speckles associated with nsp3 protein starting at 3 h p.i., indicating that these were precursors to ROs. Furthermore, RNA replication was asynchronous, as cells with RNA at all stages of replication were found at any given time point. Our probes detected the SARS-CoV-2 variants of concern, and also suggested that the BA.1 strain exhibited a slower rate of replication kinetics than the WA1 strain. Our results provide insights into the kinetics of SARS-CoV-2 early post-entry events, which will facilitate identification of new therapeutic targets for early-stage replication to combat COVID-19

    Vesicular Stomatitis Virus-Based Vaccines Provide Cross-Protection against Andes and Sin Nombre Viruses

    No full text
    Andes virus (ANDV) and Sin Nombre virus (SNV) are the main causative agents responsible for hantavirus cardiopulmonary syndrome (HCPS) in the Americas. HCPS is a severe respiratory disease with a high fatality rate for which there are no approved therapeutics or vaccines available. Some vaccine approaches for HCPS have been tested in preclinical models, but none have been tested in infectious models in regard to their ability to protect against multiple species of HCPS-causing viruses. Here, we utilize recombinant vesicular stomatitis virus-based (VSV) vaccines for Andes virus (ANDV) and Sin Nombre virus (SNV) and assess their ability to provide cross-protection in infectious challenge models. We show that, while both rVSVΔG/ANDVGPC and rVSVΔG/SNVGPC display attenuated growth as compared to wild type VSV, each vaccine is able to induce a cross-reactive antibody response. Both vaccines protected against both homologous and heterologous challenge with ANDV and SNV and prevented HCPS in a lethal ANDV challenge model. This study provides evidence that the development of a single vaccine against HCPS-causing hantaviruses could provide protection against multiple agents
    corecore