76 research outputs found

    The host immune response contributes to Haemophilus influenzae virulence

    Get PDF
    SummaryBackgroundThere is compelling evidence that infections with non-typeable Haemophilus influenzae (NTHi) are associated with exacerbations in COPD patients. However, NTHi has also been isolated frequently during clinically stable disease. In this study we tested the hypothesis that genetically distinct NTHi isolates obtained from COPD patients differ in virulence which could account for dissimilarities in the final outcome of an infection (stable vs. exacerbation).ResultsNTHi isolates (n = 32) were obtained from stable COPD patients, or during exacerbations. Genetically divergent NTHi isolates were selected and induction of inflammation was assessed as an indicator of virulence using different in vitro models. Despite marked genomic differences among NTHi isolates, in vitro studies could not distinguish between NTHi isolates based on their inflammatory capacities. Alternatively, when using a whole blood assay results demonstrated marked inter-, but not intra-individual differences in cytokine release between healthy volunteers irrespective of the origin of the NTHi isolate used.ConclusionResults suggest that the individual immune reactivity might be an important predictor for the clinical outcome (exacerbation vs. no exacerbation) following NTHi infection

    Interobserver agreement in interpretation of chest radiographs for pediatric community acquired pneumonia: Findings of the pedCAPNETZ-cohort.

    Get PDF
    Although chest radiograph (CXR) is commonly used in diagnosing pediatric community acquired pneumonia (pCAP), limited data on interobserver agreement among radiologists exist. PedCAPNETZ is a prospective, observational, and multicenter study on pCAP. N = 233 CXR from patients with clinical diagnosis of pCAP were retrieved and n = 12 CXR without pathological findings were added. All CXR were interpreted by a radiologist at the site of recruitment and by two external, blinded pediatric radiologists. To evaluate interobserver agreement, the reporting of presence or absence of pCAP in CXR was analyzed, and prevalence and bias-adjusted kappa (PABAK) statistical testing was applied. Overall, n = 190 (82%) of CXR were confirmed as pCAP by two external pediatric radiologists. Compared with patients with pCAP negative CXR, patients with CXR-confirmed pCAP displayed higher C-reactive protein levels and a longer duration of symptoms before enrollment (p < .007). Further parameters, that is, age, respiratory rate, and oxygen saturation showed no significant difference. The interobserver agreement between the onsite radiologists and each of the two independent pediatric radiologists for the presence of pCAP was poor to fair (69%; PABAK = 0.39% and 76%; PABAK = 0.53, respectively). The concordance between the external radiologists was fair (81%; PABAK = 0.62). With regard to typical CXR findings for pCAP, chance corrected interrater agreement was highest for pleural effusions, infiltrates, and consolidations and lowest for interstitial patterns and peribronchial thickening. Our data show a poor interobserver agreement in the CXR-based diagnosis of pCAP and emphasized the need for harmonized interpretation standards

    Cigarette smoke extract induced exosome release is mediated by depletion of exofacial thiols and can be inhibited by thiol-antioxidants

    Get PDF
    Introduction: Airway epithelial cells have been described to release extracellular vesicles (EVs) with pathological properties when exposed to cigarette smoke extract (CSE). As CSE causes oxidative stress, we investigated whether its oxidative components are responsible for inducing EV release and whether this could be prevented using the thiol antioxidants N-acetyl-L-cysteine (NAC) or glutathione (GSH). Methods: BEAS-2B cells were exposed for 24 h to CSE, H2O2, acrolein, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), bacitracin, rutin or the anti-protein disulfide isomerase (PDI) antibody clone RL90; with or without NAC or GSH. EVs in media were measured using CD63(+)CD81(+) bead-coupled flow cytometry or tunable resistive pulse sensing (TRPS). For characterization by Western Blotting, cryo-transmission electron microscopy and TRPS, EVs were isolated using ultracentrifugation. Glutathione disulfide and GSH in cells were assessed by a GSH reductase cycling assay, and exofacial thiols using Flow cytometry. Results: CSE augmented the release of the EV subtype exosomes, which could be prevented by scavenging thiol-reactive components using NAC or GSH. Among thiol-reactive CSE components, H2O2 had no effect on exosome release, whereas acrolein imitated the NAC-reversible exosome induction. The exosome induction by CSE and acrolein was paralleled by depletion of cell surface thiols. Membrane impermeable thiol blocking agents, but not specific inhibitors of the exofacially located thiol-dependent enzyme PDI, stimulated exosome release. Summary/conclusion: Thiol-reactive compounds like acrolein account for CSE-induced exosome release by reacting with cell surface thiols. As acrolein is produced endogenously during inflammation, it may influence exosome release not only in smokers, but also in ex-smokers with chronic obstructive pulmonary disease. NAC and GSH prevent acrolein-and CSE-induced exosome release, which may contribute to the clinical benefits of NAC treatment

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Vaccination in Pneumology

    No full text

    Advances in the prevention, management, and treatment of community-acquired pneumonia

    Get PDF
    Community-acquired pneumonia (CAP) is the infectious disease with the highest number of deaths worldwide. Nevertheless, its importance is often underestimated. Large cohorts of patients with CAP have been established worldwide and improved our knowledge about CAP by far. Therefore, current guidelines are much more evidence-based than ever before. This article discusses recent major studies and concepts on CAP such as the role of biomarkers, appropriate risk stratification to identify patients in need of hospitalisation or intensive care, appropriate empiric antibiotic therapy (including the impact of macrolide combination therapy and antibiotic stewardship), and CAP prevention with novel influenza and pneumococcal vaccines

    Viral-bacterial interactions in the respiratory tract

    No full text
    In the respiratory tract, viruses and bacteria can interact on multiple levels. It is well known that respiratory viruses, particularly influenza viruses, increase the susceptibility to secondary bacterial infections. Numerous mechanisms, including compromised physical and immunological barriers, and changes in the microenvironment have hereby been shown to contribute to the development of secondary bacterial infections. In contrast, our understanding of how bacteria shape a response to subsequent viral infection is still limited. There is emerging evidence that persistent infection (or colonization) of the lower respiratory tract (LRT) with potential pathogenic bacteria, as observed in diseases like chronic obstructive pulmonary disease or cystic fibrosis, modulates subsequent viral infections by increasing viral entry receptors and modulating the inflammatory response. Moreover, recent studies suggest that even healthy lungs are not, as had long been assumed, sterile. The composition of the lung microbiome may thus modulate responses to viral infections. Here we summarize the current knowledge on the co-pathogenesis between viruses and bacteria in LRT infections

    Extracellular vesicles released in response to respiratory exposures: implications for chronic disease

    No full text
    Extracellular vesicles (EV) are secreted signaling entities that enhance various pathological processes when released in response to cellular stresses. Respiratory exposures such as cigarette smoke and air pollution exert cellular stresses and are associated with an increased risk of several chronic diseases. The aim of this review was to examine the evidence that modifications in EV contribute to respiratory exposure-associated diseases. Publications were searched using PubMed and Google Scholar with the search terms (cigarette smoke OR tobacco smoke OR air pollution OR particulate matter) AND (extracellular vesicles OR exosomes OR microvesicles OR microparticles OR ectosomes). All original research articles were included and reviewed. Fifty articles were identified, most of which investigated the effect of respiratory exposures on EV release in vitro (25) and/or on circulating EV in human plasma (24). The majority of studies based their main observations on the relatively insensitive scatter-based flow cytometry of EV (29). EV induced by respiratory exposures were found to modulate inflammation (19), thrombosis (13), endothelial dysfunction (11), tissue remodeling (6), and angiogenesis (3). By influencing these processes, EV may play a key role in the development of cardiovascular diseases and chronic obstructive pulmonary disease and possibly lung cancer and allergic asthma. The current findings warrant additional research with improved methodologies to evaluate the contribution of respiratory exposure-induced EV to disease etiology, as well as their potential as biomarkers of exposure or risk and as novel targets for preventive or therapeutic strategies
    corecore