27 research outputs found

    Novel intranasal vaccine targeting SARS-CoV-2 receptor binding domain to mucosal microfold cells and adjuvanted with TLR3 agonist Riboxximâ„¢ elicits strong antibody and T-cell responses in mice

    Get PDF
    SARS-CoV-2 continues to circulate in the human population necessitating regular booster immunization for its long-term control. Ideally, vaccines should ideally not only protect against symptomatic disease, but also prevent transmission via asymptomatic shedding and cover existing and future variants of the virus. This may ultimately only be possible through induction of potent and long-lasting immune responses in the nasopharyngeal tract, the initial entry site of SARS-CoV-2. To this end, we have designed a vaccine based on recombinantly expressed receptor binding domain (RBD) of SARS-CoV-2, fused to the C-terminus of C. perfringens enterotoxin, which is known to target Claudin-4, a matrix molecule highly expressed on mucosal microfold (M) cells of the nasal and bronchial-associated lymphoid tissues. To further enhance immune responses, the vaccine was adjuvanted with a novel toll-like receptor 3/RIG-I agonist (Riboxximâ„¢), consisting of synthetic short double stranded RNA. Intranasal prime-boost immunization of mice induced robust mucosal and systemic anti-SARS-CoV-2 neutralizing antibody responses against SARS-CoV-2 strains Wuhan-Hu-1, and several variants (B.1.351/beta, B.1.1.7/alpha, B.1.617.2/delta), as well as systemic T-cell responses. A combination vaccine with M-cell targeted recombinant HA1 from an H1N1 G4 influenza strain also induced mucosal and systemic antibodies against influenza. Taken together, the data show that development of an intranasal SARS-CoV-2 vaccine based on recombinant RBD adjuvanted with a TLR3 agonist is feasible, also as a combination vaccine against influenza

    Evidence of Recombination in the Norovirus Capsid Gene

    No full text
    Noroviruses are single-stranded RNA viruses with high genomic variability. They have emerged in the last decade as a major cause of acute gastroenteritis. It remains so far unclear whether norovirus evolution is driven by sequence mutation and/or recombination. In this study, we have assessed the occurrence of recombination in the norovirus capsid gene. For this purpose, 69 complete capsid sequences of norovirus strains accessible in GenBank as well as 25 complete capsid sequences generated from norovirus-positive clinical samples were examined. Unreported recombination was detected in about 8% of norovirus strains belonging to genetic clusters I/1 (n = 1), II/1 (n = 1), II/3 (n = 1), II/4 (n = 3), and II/5 (n = 1). Recombination breakpoints were mainly located at the interface of the putative P1-1 and P2 domains of the capsid protein and/or within the P2 domain. The recombination region displayed features such as length, sequence composition (upstream and downstream GC- and AU-rich sequences, respectively), and predicted RNA secondary structure that are characteristic of homologous recombination activators. Our results suggest that recombination in the norovirus capsid gene may naturally occur, involving capsid domains presumably exposed to immunological pressure

    Protein-Primed and De Novo Initiation of RNA Synthesis by Norovirus 3D(pol)

    No full text
    Noroviruses (Caliciviridae) are RNA viruses with a single-stranded, positive-oriented polyadenylated genome. To date, little is known about the replication strategy of norovirus, a so-far noncultivable virus. We have examined the initiation of replication of the norovirus genome in vitro, using the active norovirus RNA-dependent RNA polymerase (3D(pol)), homopolymeric templates, and synthetic subgenomic or antisubgenomic RNA. Initiation of RNA synthesis on homopolymeric templates as well as replication of subgenomic polyadenylated RNA was strictly primer dependent. In this context and as observed for other enteric RNA viruses, i.e., poliovirus, a protein-primed initiation of RNA synthesis after elongation of the VPg by norovirus 3D(pol) was postulated. To address this question, norovirus VPg was expressed in Escherichia coli and purified. Incubation of VPg with norovirus 3D(pol) generated VPg-poly(U), which primed the replication of subgenomic polyadenylated RNA. In contrast, replication of antisubgenomic RNA was not primer dependent, nor did it depend on a leader sequence, as evidenced by deletion analysis of the 3′ termini of subgenomic and antisubgenomic RNA. On nonpolyadenylated RNA, i.e., antisubgenomic RNA, norovirus 3D(pol) initiated RNA synthesis de novo and terminated RNA synthesis by a poly(C) stretch. Interestingly, on poly(C) RNA templates, norovirus 3D(pol) initiated RNA synthesis de novo in the presence of high concentrations of GTP. We propose a novel model for initiation of replication of the norovirus genome by 3D(pol), with a VPg-protein-primed initiation of replication of polyadenylated genomic RNA and a de novo initiation of replication of antigenomic RNA

    Fatal Myocarditis Associated with Acute Parvovirus B19 and Human Herpesvirus 6 Coinfection

    No full text
    We report on the case of a healthy young boy who developed a fulminant myocarditis due to acute coinfection with erythrovirus (parvovirus B19) and human herpesvirus 6 (HHV-6) in the absence of an antiviral immune response. We suggest that the HHV-6-induced immunosuppression enhanced dissemination of parvovirus B19, which led to fatal myocarditis

    Activation of Dendritic Cells by the Novel Toll-Like Receptor 3 Agonist RGC100

    Get PDF
    Toll-like receptor (TLR) 3 agonists emerged as attractive candidates for vaccination strategies against tumors and pathogens. An important mechanism of action of such agonists is based on the activation of TLR3-expressing dendritic cells (DCs), which display a unique capacity to induce and stimulate T-cell responses. In this context, it has been demonstrated that targeting of TLR3 by double-stranded RNA such as poly(I:C) results in potent activation of DCs. Major disadvantages of poly(I:C) comprise its undefined chemical structure and very poor homogeneity, with subsequent unpredictable pharmacokinetics and high toxicity. In the present study, we evaluated the physicochemical properties and biological activity of the novel TLR3 agonist RGC100. RGC100 has a defined chemical structure, with a defined length (100 bp) and molecular weight (64.9 KDa) and a good solubility. RGC100 is stable in serum and activates myeloid DCs through TLR3 targeting, as evidenced by gene silencing experiments. Activation of mouse and human myeloid CD1c+ DCs by RGC100 leads to secretion of several proinflammatory cytokines. In addition, RGC100 improves the ability of CD1c+ DCs to stimulate T-cell proliferation. Due to its physicochemical properties and its immunostimulatory properties, RGC100 may represent a promising adjuvant for prophylactic and therapeutic vaccination strategies

    PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxxim synergizes with immune checkpoint blockade for effective anti-cancer immunotherapy

    No full text
    With emerging supremacy, cancer immunotherapy has evolved as a promising therapeutic modality compared to conventional antitumor therapies. Cancer immunotherapy composed of biodegradable poly(lactic-co-glycolic acid) (PLGA) particles containing antigens and toll-like receptor ligands induces vigorous antitumor immune responses in vivo. Here, we demonstrate the supreme adjuvant effect of the recently developed and pharmaceutically defined double-stranded (ds)RNA adjuvant Riboxxim especially when incorporated into PLGA particles. Encapsulation of Riboxxim together with antigens potently activates murine and human dendritic cells, and elevated tumor-specific CD8+ T cell responses are superior to those obtained using classical dsRNA analogues. This PLGA particle vaccine affords primary tumor growth retardation, prevention of metastases, and prolonged survival in preclinical tumor models. Its advantageous therapeutic potency was further enhanced by immune checkpoint blockade that resulted in reinvigoration of cytotoxic T lymphocyte responses and tumor ablation. Thus, combining immune checkpoint blockade with immunotherapy based on Riboxxim-bearing PLGA particles strongly increases its efficacy.publishe
    corecore