10 research outputs found

    An acute and fatal case of human leptospirosis in Sabah, Malaysia.

    Get PDF
    An acute and fatal case of leptospirosis in a young man is described. Tissue samples from various internal organs examined by polymerase chain reaction (PCR) assay were positive for leptospiral DNA. The presence of specific leptospiral DNA as evident through PCR in all the organ samples except the lungs, were indicative of an acute and septicaemic disease. It was shown that PCR is a simple and rapid assay that could be used to diagnose cases of leptospiral infection

    Genotypic characterization of Streptococcus pneumoniae serotype 19F in Malaysia

    Get PDF
    Streptococcus pneumoniae is an epidemiologically important bacterial pathogen. Recently, we reported the antibiotic susceptibility patterns of a limited collection of pneumococcal isolates in Malaysia with a high prevalence of erythromycin resistant strains. In the present study, 55 of the pneumococcal isolates of serotype 19F were further analysed by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The generated genotypic patterns were then correlated with the antibiograms previously reported. Forty-seven different PFGE profiles (PTs) were obtained, showing that the isolates were genetically diverse. MLST identified 16 sequence types (STs) with ST-236 being predominant (58.2%), followed by ST-81 (10.3%). Among the ST-236 isolates, 22 were erythromycin resistant S. pneumoniae (ERSP) and 15 were trimethoprim/sulfamethoxazole (TMP/SMX) resistant, while among ST-81, four isolates were ERSP and two were TMP/SMX resistant. The high prevalence of erythromycin resistant serotype 19F isolates of ST-236 in this study has also been reported in other North and South East Asian countries

    Prevalence of macrolide resistance and in vitro activities of six antimicrobial agents against clinical isolates of streptococcus pneumoniae from a multi-center surveillance in Malaysia

    Get PDF
    The in vitro activities of 6 antimicrobial agents against clinical isolates of Streptococcus pneumoniae (pneumococci) were investigated and the erythromycin minimum inhibitory concentrations (MICs) were correlated with the two major macrolide resistance determinants, mef(A) and erm(B). MICs of commonly used antibiotics as well as the presence of macrolide resistance determinant genes in all isolates were tested. Seventy one pneumococcal isolates collected at Institute for Medical Research (IMR) were included in this study. Phenotypic characterization, MIC determination using E-test strips and polymerase chain reactions for antibiotic resistance determination were included. Among the isolates, 25 (35.2%) isolates were erythromycin susceptible, 3 (4.2%) were intermediate and 42 (60.6%) were resistant. Fifty three isolates (74.7%) were found with mef(A) alone, 15 (21.1%) isolates with erm(B) + mef(A) combination and 3 (4.2%) isolates with none of the two genes. The in vitro activity of penicillin, amoxicillin clavulanic acid, ceftriaxone and cefotaxime is superior to trimethoprim-sulfamethoxazole and erythromycin. In conclusion, pneumococcal isolates in this study were highly susceptible to penicillin with very low MICs. However, a very high prevalence rate of erythromycin resistance was observed. Erythromycin resistant S. pneumoniae isolates with both mef(A) and erm(B) showed very high MICs ≥256 μg/mL

    Detection of virulence genes in Malaysian Shigella species by multiplex PCR assay

    Get PDF
    BACKGROUND: In Malaysia, Shigella spp. was reported to be the third commonest bacterial agent responsible for childhood diarrhoea. Currently, isolation of the bacterium and confirmation of the disease by microbiological and biochemical methods remain as the "gold standard". This study aimed to detect the prevalence of four Shigella virulence genes present concurrently, in randomly selected Malaysian strains via a rapid multiplex PCR (mPCR) assay. METHODS: A mPCR assay was designed for the simultaneous detection of chromosomal- and plasmid-encoded virulence genes (set1A, set1B, ial and ipaH) in Shigella spp. One hundred and ten Malaysian strains (1997–2000) isolated from patients from various government hospitals were used. Reproducibility and sensitivity of the assay were also evaluated. Applicability of the mPCR in clinical settings was tested with spiked faeces following preincubation in brain heart infusion (BHI) broth. RESULTS: The ipaH sequence was present in all the strains, while each of the set1A, set1B and ial gene was present in 40% of the strains tested. Reproducibility of the mPCR assay was 100% and none of the non-Shigella pathogens tested in this study were amplified. The mPCR could detect 100 colony-forming units (cfu) of shigellae per reaction mixture in spiked faeces following preincubation. CONCLUSIONS: The mPCR system is reproducible, sensitive and is able to identify pathogenic strains of shigellae irrespective of the locality of the virulence genes. It can be easily performed with a high throughput to give a presumptive identification of the causal pathogen

    Genetic fingerprinting and antimicrobial susceptibility profiles of pseudomonas seruginosa hospital isolates in Malaysia

    No full text
    Background and purpose: Pseudomonas aeruginosa is the third most common pathogen causing nosocomial infections. The objective of this study was to investigate the antimicrobial resistance profiles and genetic diversity of hospital isolates of P. aeruginosa and to investigate the presence of several resistance genes and integrons. Methods: In this retrospective study, 48 clinical isolates of P. aeruginosa from 6 public hospitals in Malaysia were analyzed by antimicrobial susceptibility test and DNA fingerprinting techniques. Results: Most of the P. aeruginosa isolates were resistant to tetracycline (73) and chloramphenicol (60) and, to a lesser extent, cefotaxime (40), ceftriaxone (31), cefoperazone (29), ticarcillin (25), piperacillin (23), and imipenem (21). Less than 20 of the isolates were resistant to ceftazidime, gentamicin, cefepime, ciprofloxacin, amikacin, piperacillin-tazobactam, and aztreonam (10). Of the 48 isolates, 33 were multidrug resistant. Two isolates were extended-spectrum beta-lactamase (ESBL) producers using the double-disk synergy test. However, polymerase chain reaction (PCR) failed to detect any common ESBL-encoding genes in all isolates, except for bl(OXA-10) in PA7 that was found to be part of a class 1 integron-encoded aacA4-bla(IMP-9)-catB8-bla(OXA-10) gene cassette. Using PCR, class 1 integron-encoded integrases were detected in 19 of the P aeruginosa isolates. Repetitive extragenic palindrome-PCR generated 40 different profiles (F = 0.50-1.0) and enterobacterial repetitive intergenic consensus-PCR produced 46 profiles (F = 0.51-1.0). Pulsed-field gel electrophoresis with Spel-digested genomic DNA resulted in 45 different profiles (F = 0.50-1.00). Conclusion: Aztreonam appeared to be the most effective agent against multidrug-resistant P. aeruginosa isolates. Sixty nine percent of the P aeruginosa isolates analyzed were multidrug resistant and the isolates were genetically diverse
    corecore