5,654 research outputs found

    The effects of peripheral and central high insulin on brain insulin signaling and amyloid-β in young and old APP/PS1 mice

    Get PDF
    Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-β (Aβ), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APP(swe)/PS1(dE9) transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aβ compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aβ was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aβ, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aβ in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aβ in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aβ in young and old mice, independent of neuronal insulin signaling. SIGNIFICANCE STATEMENT The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections between high insulin and extracellular Aβ, but these mechanisms presume that peripheral high insulin elevates brain insulin significantly. We found that physiological hyperinsulinemia in awake, behaving mice does not increase CNS insulin to an appreciable level yet modestly increases extracellular Aβ. We also found that the brain of aged APP/PS1 mice was not insulin resistant, contrary to the current state of the literature. These results further elucidate the relationship between insulin, the brain, and AD and its conflicting roles as both a risk factor and potential treatment

    Deficiency of plasminogen activator inhibitor‐2 results in accelerated tumor growth

    Full text link
    BackgroundUpregulation of the plasminogen activation system, including urokinase plasminogen activator (uPA), has been observed in many malignancies, suggesting that co‐opting the PA system is a common method by which tumor cells accomplish extracellular matrix proteolysis. PAI‐2, a serine protease inhibitor, produced from the SERPINB2 gene, inhibits circulating and extracellular matrix‐tethered uPA. Decreased SERPINB2 expression has been associated with increased tumor invasiveness and metastasis for several types of cancer. PAI‐2 deficiency has not been reported in humans and PAI‐2‐deficient (SerpinB2−/−) mice exhibit no apparent abnormalities.ObjectivesWe investigated the role of PAI‐2 deficiency on tumor growth and metastasis.MethodsTo explore the long‐term impact of PAI‐2 deficiency, a cohort of SerpinB2−/− mice were aged to >18 months, with spontaneous malignancies observed in 4/9 animals, all of apparently vascular origin. To further investigate the role of PAI‐2 deficiency in malignancy, SerpinB2−/− and wild‐type control mice were injected with either B16 melanoma or Lewis lung carcinoma tumor cells, with markedly accelerated tumor growth observed in SerpinB2−/− mice for both cell lines. To determine the relative contributions of PAI‐2 from hematopoietic or nonhematopoietically derived sources, bone marrow transplants between wild‐type C57BL/6J and SerpinB2−/− mice were performed.Results and ConclusionsOur results suggest that PAI‐2 deficiency increases susceptibility to spontaneous tumorigenesis in the mouse, and demonstrate that SerpinB2 expression derived from a nonhematopoietic compartment is a key host factor in the regulation of tumor growth in both the B16 melanoma and Lewis lung carcinoma models.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163438/2/jth15054_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163438/1/jth15054.pd

    Development and first evaluation of an attractant impregnated adhesive tape against blood-sucking flies

    Get PDF
    Stable flies are one of the most important arthropod pests of livestock that reduce cattle weight gain and milk production leading to annual economic losses in excess of $2 billion to the US cattle industry. The host-seeking behavior is primarily mediated by associated odors from stable fly larval development environments and host animals. The present paper reports the development and evaluation of attractant-impregnated adhesive tapes to reduce stable fly attacks on cattle. Laboratory bioassays showed that only m-cresol impregnated adhesive tapes caught significantly more stable flies (16 ± 1) than the control tape without attractant added (7 ± 1), with a 77% fly recapture rate. Attractantimpregnated adhesive tapes deployed in cattle feedlots showed significant impacts in reducing fly population, with a total of one million stable flies captured over a period of three weeks (mean catches from 57 596 to 102 088 stable flies per trap per week). It further relieved cattle stress with a significant reduction of biting fly avoidance behavior, (6 ± 0.4 cows observed with tail wagging in control vs. 3 ± 0.4 from the trap-deployed). The efficacy of the developed tapes lasted up to 1-week longevity, although 70% of mcresol was released starting from the second day. The m-cresol impregnated adhesive tape provided an 80% reduction in cattle stress due to stable fly attack. This is the first report of a technology developed by integrating an attractant compound into an adhesive material on a plastic film with demonstrated effectiveness in trapping biting flies that attack livestock animals

    Development and first evaluation of an attractant impregnated adhesive tape against blood-sucking flies

    Get PDF
    Stable flies are one of the most important arthropod pests of livestock that reduce cattle weight gain and milk production leading to annual economic losses in excess of $2 billion to the US cattle industry. The host-seeking behavior is primarily mediated by associated odors from stable fly larval development environments and host animals. The present paper reports the development and evaluation of attractant-impregnated adhesive tapes to reduce stable fly attacks on cattle. Laboratory bioassays showed that only m-cresol impregnated adhesive tapes caught significantly more stable flies (16 ± 1) than the control tape without attractant added (7 ± 1), with a 77% fly recapture rate. Attractantimpregnated adhesive tapes deployed in cattle feedlots showed significant impacts in reducing fly population, with a total of one million stable flies captured over a period of three weeks (mean catches from 57 596 to 102 088 stable flies per trap per week). It further relieved cattle stress with a significant reduction of biting fly avoidance behavior, (6 ± 0.4 cows observed with tail wagging in control vs. 3 ± 0.4 from the trap-deployed). The efficacy of the developed tapes lasted up to 1-week longevity, although 70% of mcresol was released starting from the second day. The m-cresol impregnated adhesive tape provided an 80% reduction in cattle stress due to stable fly attack. This is the first report of a technology developed by integrating an attractant compound into an adhesive material on a plastic film with demonstrated effectiveness in trapping biting flies that attack livestock animals

    A preexisting rare PIK3CA e545k subpopulation confers clinical resistance to MEK plus CDK4/6 inhibition in NRAS melanoma and is dependent on S6K1 signaling

    Get PDF
    Combined MEK and CDK4/6 inhibition (MEKi + CDK4i) has shown promising clinical outcomes in patients with NRAS- mutant melanoma. Here, we interrogated longitudinal biopsies from a patient who initially responded to MEKi + CDK4i therapy but subsequently developed resistance. Whole-exome sequencing and functional validation identified an acquired PIK3CA E545K mutation as conferring drug resistance. We demonstrate that PIK3CA E545K preexisted in a rare subpopulation that was missed by both clinical and research testing, but was revealed upon multiregion sampling due to PIK3CA E545K being nonuniformly distributed. This resistant population rapidly expanded after the initiation of MEKi + CDK4i therapy and persisted in all successive samples even after immune checkpoint therapy and distant metastasis. Functional studies identified activated S6K1 as both a key marker and specific therapeutic vulnerability downstream of PIK3CA E545K -induced resistance. These results demonstrate that difficult-to-detect preexisting resistance mutations may exist more often than previously appreciated and also posit S6K1 as a common downstream therapeutic nexus for the MAPK, CDK4/6, and PI3K pathways. SIGNIFICANCE: We report the first characterization of clinical acquired resistance to MEKi + CDK4i, identifying a rare preexisting PIK3CA E545K subpopulation that expands upon therapy and exhibits drug resistance. We suggest that single-region pretreatment biopsy is insufficient to detect rare, spatially segregated drug-resistant subclones. Inhibition of S6K1 is able to resensitize PIK3CA E545K -expressing NRAS-mutant melanoma cells to MEKi + CDK4i. © 2018 AAC

    AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy

    Get PDF
    Tauopathies are characterized by the progressive accumulation of hyperphosphorylated, aggregated forms of tau. Our laboratory has previously demonstrated that passive immunization with an anti-tau antibody, HJ8.5, decreased accumulation of pathological tau in a human P301S tau-expressing transgenic (P301S-tg) mouse model of frontotemporal dementia/tauopathy. To investigate whether the

    Spatial repellency, antifeedant activity and toxicity of three medium chain fatty acids and their methyl esters of coconut fatty acid against stable flies

    Get PDF
    BACKGROUND: Stable flies are one of the most detrimental arthropod pests to livestock. With changing climates and agronomic practices, they expand their roles as pests and disease vectors as well. Their painful bites reduce livestock productivity, annoy companion animals, and interfere with human recreational activities. Current management technologies are unable to effectively control stable flies. The present study reports new results concerning the contact, spatial repellency, and toxicity of a bio-based product, coconut fatty acid and their methyl ester derivatives of free fatty acids of C8:0, C10:0 and C12:0 to stable flies. RESULTS: Three medium chain fatty acid methyl esters (C8:0 , C10:0 and C12:0 ) showed strong antifeedant activity against stable flies and their strengths were dose-dependent. Only the C8:0 acid, C8:0 - and C10:0 methyl esters elicited significant antennal responses. Laboratory single cage olfactometer bioassays revealed that coconut fatty acid and C8:0 methyl ester displayed active spatial repellency. All three methyl esters showed strong toxicity against stable flies. CONCLUSION: Antifeedant activity is the main method through which coconut fatty acid deters stable fly blood-feeding. The C8:0, C10:0 and C12:0 methyl esters act not only as strong antifeedants, but also possess strong toxicity against stable fly adults. Limited spatial repellency was observed from coconut fatty acid and C8:0 methyl ester

    Spatial repellency, antifeedant activity and toxicity of three medium chain fatty acids and their methyl esters of coconut fatty acid against stable flies

    Get PDF
    BACKGROUND: Stable flies are one of the most detrimental arthropod pests to livestock. With changing climates and agronomic practices, they expand their roles as pests and disease vectors as well. Their painful bites reduce livestock productivity, annoy companion animals, and interfere with human recreational activities. Current management technologies are unable to effectively control stable flies. The present study reports new results concerning the contact, spatial repellency, and toxicity of a bio-based product, coconut fatty acid and their methyl ester derivatives of free fatty acids of C8:0, C10:0 and C12:0 to stable flies. RESULTS: Three medium chain fatty acid methyl esters (C8:0 , C10:0 and C12:0 ) showed strong antifeedant activity against stable flies and their strengths were dose-dependent. Only the C8:0 acid, C8:0 - and C10:0 methyl esters elicited significant antennal responses. Laboratory single cage olfactometer bioassays revealed that coconut fatty acid and C8:0 methyl ester displayed active spatial repellency. All three methyl esters showed strong toxicity against stable flies. CONCLUSION: Antifeedant activity is the main method through which coconut fatty acid deters stable fly blood-feeding. The C8:0, C10:0 and C12:0 methyl esters act not only as strong antifeedants, but also possess strong toxicity against stable fly adults. Limited spatial repellency was observed from coconut fatty acid and C8:0 methyl ester

    An initial event in insect innate immune response: structural and biological studies of interactions between β-1,3-glucan and the N-terminal domain of β-1,3-glucan recognition protein

    Get PDF
    In response to invading microorganisms, insect β-1,3-glucan recognition protein (βGRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades that promote destruction of pathogens by means of melanization or expression of antimicrobial peptides. Here we report on the NMR solution structure of the N-terminal domain of βGRP (N-βGRP) from Indian meal moth (Plodia interpunctella), which is sufficient to activate the prophenoloxidase (proPO) pathway resulting in melanin formation. NMR and isothermal calorimetric titrations of N-βGRP with laminarihexaose, a glucose hexamer containing β-1,3 links, suggest a weak binding of the ligand. However, addition of laminarin, a glucose polysaccharide (~ 6 kDa) containing β-1,3 and β-1,6 links that activates the proPO pathway, to N-βGRP results in the loss of NMR cross-peaks from the backbone 15N-1H groups of the protein, suggesting the formation of a large complex. Analytical ultra centrifugation (AUC) studies of formation of N-βGRP:laminarin complex show that ligand-binding induces sel-fassociation of the protein:carbohydrate complex into a macro structure, likely containing six protein and three laminarin molecules (~ 102 kDa). The macro complex is quite stable, as it does not undergo dissociation upon dilution to sub-micromolar concentrations. The structural model thus derived from the present studies for N-βGRP:laminarin complex in solution differs from the one in which a single N-βGRP molecule has been proposed to bind to a triple helical form of laminarin on the basis of an X-ray crystallographic structure of N-βGRP:laminarihexaose complex [Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N., and Yamaguchi, Y. (2011) J. Biol. Chem. 286, 29158-29165]. AUC studies and phenoloxidase activation measurements carried out with the designed mutants of N-βGRP indicate that electrostatic interactions involving Asp45, Arg54, and Asp68 between the ligand-bound protein molecules contribute in part to the stability of N-βGRP:laminarin macro complex and that a decreased stability is accompanied by a reduced activation of the proPO pathway. Increased β-1,6 branching in laminarin also results in destabilization of the macro complex. These novel findings suggest that ligand-induced self-association of βGRP:β-1,3-glucan complex may form a platform on a microbial surface for recruitment of downstream proteases, as a means of amplification of the initial signal of pathogen recognition for the activation of the proPO pathway
    corecore